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《泛函分析》课堂笔记

第一章 度量空间

§ 1.1 基本定义

定义 1.1（度量、度量空间）设 X 是一个非空集合，如果 d : X ×X → R 满足
(1) 正定性：d(x, y) ≥ 0, ∀x, y ∈ X，且 d(x, y) = 0 ⇐⇒ x = y

(2) 对称性：d(x, y) = d(y, x), ∀x, y ∈ X
(3) 三角不等式：d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X
则称 d 是 X 上的一个度量或距离，(X, d) 称为度量空间

例 1.2 设 X = Rn, x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ Rn，定义欧氏度量为

d2(x, y) =

(
n∑

i=1

|xi − yi|2
) 1

2

此时有度量空间 (Rn, d2)

对 ∀1 ≤ p <∞，我们还可以定义 lp 度量

dp(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

此时有度量空间 (Rn, dp)

当 p =∞ 时，定义 l∞ 度量为

d∞(x, y) = max
1≤k≤n

|xk − yk|

例 1.3（French Railroad Metric）设 X = R2，取定 p ∈ R2，称 p 为 Paris，定义度量

d(x, y) =

d2(x, y), 如果x, y, p共线

d2(x, p) + d2(p, y), 如果x, y, p不共线

例 1.4（离散度量）设 X 6= ∅，定义离散度量

d(x, y) =

1, x 6= y

0, x = y

例 1.5 任意给定度量空间 (X, d)，定义

d∗(x, y) =
d(x, y)

1 + d(x, y) , ∀x, y ∈ X

则不难验证 d∗ 是 X 上的一个度量，正定性与对称性显然，下面验证三角不等式
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《泛函分析》课堂笔记 § 1.1 基本定义

注意到函数 t 7→ t
1+t
在 t ≥ 0 单调增，则

d∗(x, y) =
d(x, y)

1 + d(x, y) ≤
d(x, z) + d(z, y)

1 + d(x, z) + d(z, y)

≤ d(x, z)
1 + d(x, z) +

d(z, y)
1 + d(z, y) = d∗(x, z) + d∗(z, y)

习题 1.6 设 X 上有一列度量 {dn}∞n=1，定义

d(x, y) =
∞∑

n=1

1

2n
dn(x, y)

1 + dn(x, y)

证明 d 是 X 上的度量

例 1.7 记 C[0, 1] = {[0, 1]上的连续函数}，对 ∀1 ≤ p <∞，定义度量

dp(f, g) =

(ˆ 1

0

|f(t)− g(t)|pdt
) 1

p

当 p =∞ 时，定义度量
d∞(f, g) = max

t∈[0,1]
|f(t)− g(t)|

定义 1.8（度量子空间）设有度量空间 (X, d),∅ 6= A ⊂ X，定义 dA
def
= d|A×A，则 dA 是 A 上的度

量，(A, dA) 称为 (X, d) 的度量子空间

例 1.9（乘积度量）设有度量空间 (X1, d1), (X2, d2)，定义 X1 ×X2 = {(x1, x2) : x1 ∈ X1, X2 ∈ X2} 上
的度量如下

ρ1
(
(x1, x2), (y1, y2)

) def
= d1(x1, y1) + d2(x2, y2)

或者还可以定义

ρ∞
(
(x1, x2), (y1, y2)

) def
= max{d1(x1, y1), d2(x2, y2)}

定义 1.10（直径）设有度量空间 (X, d)，对 A ⊂ X，定义 A 的直径为

diam(A)
def
= sup

x,y∈A
d(x, y)

评价 A 有界 ⇐⇒ ∃B(x0, R) ⊃ A，其中

B(x0, R) = {x ∈ X : d(x0, x) < R}

定义 1.11（收敛列）设有度量空间 (X, d)，称 {xn}∞n=1 ⊂ X 收敛，若 ∃x0 ∈ X, s.t.

d(x0, xn)→ 0 as n→∞
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《泛函分析》课堂笔记 § 1.1 基本定义

此时称 x0 为 {xn}∞n=1 的极限，记作 xn
d→ x0

习题 1.12 证明
(1) 收敛列的极限唯一

(2) 收敛列有界

例 1.13 在 Rn 中，x(n)
d2→ x(0) ⇐⇒ x(n)

dp→ x(0), ∀1 ≤ p ≤ ∞，这是因为

d∞(x, y) ≤ dp(x, y) =

(
n∑

k=1

|xk − yk|p
) 1

p

≤
(
n · max

1≤k≤n
|xk − yk|p

) 1
p

= n
1
p d∞(x, y)

例 1.14 回到例1.7，根据一致收敛的定义，fn
d∞→ f ⇐⇒ fn ⇒ f，但是 fn

dp→ f ⇏ fn ⇒ f，考虑

fn(t) =

−n3
(
t− 1

n2

)
, t ∈

[
0, 1

n2

)
0, t ∈

(
1
n2 , 1

]
则 d1(fn, 0) =

1
2
· n · 1

n2 = 1
2n
→ 0，但是 max

t∈[0,1]
|fn(t)− 0| = n↛ 0

定义 1.15（开球、闭球、球面）设有度量空间 (X, d), x0 ∈ X，定义开球为

B(x0, r)
def
= {x ∈ X : d(x0, x) < r}

定义闭球为

B(x0, r)
def
= {x ∈ X : d(x0, x) ≤ r}

球面记为

S(x0, r)
def
= {x ∈ X : d(x, x0) = r}

定义 1.16（开集、闭集）设有度量空间 (X, d), A ⊂ X，若 ∀x ∈ A, ∃rx > 0, s.t. B(x, rx) ⊂ A，则称
A 为开集，若 X\A 是开集，则称 A 是闭集

命题 1.17（度量拓扑）设有度量空间 (X, d)，令 τ = {X中开集}，则
(1) ∅, X ∈ τ
(2) τ 对任意并封闭，即 Oα ∈ τ, α ∈ Λ =⇒

⋃
α∈Λ

Oα ∈ τ

(3) τ 对有限交封闭，即 Ok ∈ τ, k = 1, · · · , n =⇒
n⋂

k=1

Ok ∈ τ

定义 1.18（接触点、聚点、闭包）设有度量空间 (X, d), A ⊂ X,x0 ∈ X
(1) 如果 ∀ε > 0, B(x0, ε) ∩A 6= ∅，则称 x0 是 A 的接触点

(2) 如果 ∀ε > 0, B(x0, ε) ∩ (A\{x0}) 6= ∅，则称 x0 是 A 的聚点（也称极限点）

(3) 定义 A = {A的接触点}，称为 A 的闭包
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《泛函分析》课堂笔记 § 1.1 基本定义

评价 聚点的等价定义：∃{xn}∞n=1 ⊂ A\{x0}, s.t. xn → x0

定义 1.19（稠密、可分）设有度量空间 (X, d), A ⊂ X，若 A = X，则称 A 在 X 中稠密，记为

A
dense
⊂ X；如果 X 有可数稠密子集，则称 X 是可分的

评价 A
dense
⊂ X ⇐⇒ ∀x ∈ X, ∃{xn}∞n=1 ⊂ A, s.t. xn → x

习题 1.20 证明 C[0, 1] 可分，提示：由 Weierstrass 一致逼近定理知

P(0, 1) def
= {[0, 1]上的多项式}

dense
⊂ C[0, 1]

定义 1.21（连续映射）设有度量空间 (X, d), (Y, ρ)，称映射 T : X → Y 在 x0 ∈ X 连续，是指

∀ε > 0, ∃δ > 0, s.t. ∀d(x, x0) < δ, ρ(Tx, Tx0) < ε

如果 T 在 X 上每点都连续，则 T : X → Y 连续

习题 1.22 证明：T : X → Y 连续 ⇐⇒ ∀u
开集
⊂ Y, T−1(u)

开集
⊂ X

定理 1.23（Heine） T : X → Y 在 x0 ∈ X 连续 ⇐⇒ ∀{xn}∞n=1 ⊂ X，若 xn → x0，则 Txn → Tx0

定义 1.24（Cauchy 列、完备度量空间）设有度量空间 (X, d), {xn}∞n=1 ⊂ X，若 ∀ε > 0, ∃N ∈
N, s.t. d(xm, xn) < ε, ∀m,n ≥ N，则称 {xn}∞n=1 是 X 中的基本列或 Cauchy 列，若 X 中任何

Cauchy 列都收敛，则称 (X, d) 是完备的

评价 Cauchy 列的等价刻画： lim
m,n→∞

d(xm, xn) = 0

例 1.25 (R, d2)完备，但是 (Q, d2)不完备：考虑 xn =
n∑

i=1

1
i2
，则 |xm−xn| =

m∑
k=n+1

1
k2 → 0, as m,n→∞，

但由数学分析的知识知，xn → π2

6
/∈ Q

习题 1.26 证明：离散度量空间完备

例 1.27 (C[0, 1], d∞) 完备

证明 设 {fn} 是 C[0, 1] 中的任一基本列，则

∀ε > 0, ∃N, s.t. max
t∈[0,1]

|fm(t)− fn(t)| < ε, ∀m,n ≥ N (1.1)

因此 ∀t ∈ [0, 1], {fn(t)} 是 R 中的基本列，所以 f(t)
def
= lim

n→∞
fn(t) 存在，下证 f(t) ∈ C[0, 1]，在 (1.1) 式

中，令 m→∞，则
max
t∈[0,1]

|f(t)− fn(t)| ≤ ε, ∀n ≥ N

即 fn ⇒ f，由一致收敛知 f ∈ C[0, 1] □
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《泛函分析》课堂笔记 § 1.1 基本定义

例 1.28 (C[0, 1], d1), d1(f, g) =
´ 1

0
|f(t)− g(t)|dt 不完备：对 n ≥ 3，定义

fn(t) =


0, t ∈

[
0, 1

2
− 1

n

)
n
(
t− 1

2

)
+ 1, t ∈

[
1
2
− 1

n
, 1
2

)
1, t ∈

[
1
2
, 1
]

则 d1(fm, fn) = 1
2

∣∣ 1
m
− 1

n

∣∣ → 0，因此 {fn} 是 (C[0, 1], d1) 中的基本列，下证 {fn}∞n=1 不收敛，假设

∃f ∈ C[0, 1], s.t. d1(fn, f)→ 0，则

d1(fn, f) =

ˆ 1
2−

1
n

0

|f(t)|dt+
ˆ 1

2

1
2−

1
n

|fn(t)− f(t)|dt+
ˆ 1

1
2

|1− f(t)|dt

→
ˆ 1

2

0

|f(t)|dt+
ˆ 1

1
2

|1− f(t)|dt

由假设知上式为零，因此在几乎处处的意义下

f(t) =

0, t ∈
[
0, 1

2

)
1, t ∈

[
1
2
, 1
]

这与 f ∈ C[0, 1] 矛盾！

例 1.29（Lp 空间）设 Ω ⊂ R 可测，1 ≤ p <∞

Lp(Ω)
def
=

{
f : f在Ω上可测,

ˆ
Ω

|f(x)|pdx <∞
}
, ||f ||p

def
=

(ˆ
Ω

|f(x)|pdx
) 1

p

这里需要注意 d(f, g) = ||f − g||p = 0 ⇐⇒ f = g a.e

定理 1.30（Riesz-Fischer） Lp(Ω) 完备，∀1 ≤ p <∞

证明 设 {fn} ⊂ Lp(Ω) 是任一基本列，则

∀n ∈ N, ∃kn ∈ N, kn−1 < kn, s.t.
(ˆ

Ω

|fkn
− fkn−1

|p
) 1

p

<
1

2n
(⇐⇒ ||fkn

− fkn−1
||p <

1

2n
)

令 uj(x)
def
=

j−1∑
n=1

|fkn+1
(x)− fkn

(x)|+ |fk1
(x)|（注意这个级数如果没有绝对值，则和为 fkj

，因此如果 {uj}

收敛，那么 {fkj
} 绝对收敛，故收敛）由定义知 uj ↗，且 ||uj ||p ≤ 1+ ||fk1

||p, ∀j，由 MCT 知 ∃u 可测，
使得 uj → u，且 ||u||p ≤ 1 + ||fk1

||p，因此 u 可积 =⇒ u a.e 有限，即级数收敛，所以 ∃f 可测，使得

fkj
=

j−1∑
n=1

(fkn+1
− fkn

) + f1 → f a.e

最后证明 ||fn − f ||p → 0 as n → ∞，由 {fn}∞n=1 ⊂ Lp(Ω) 是基本列知，对 ∀ε > 0, ∃N ∈
N, s.t.

´
Ω
|fm(x)− fkn

(x)|pdx ≤ εp, ∀m, kn ≥ N，令 n→∞，由 Fatou 引理知

||fm − f ||p =

ˆ
Ω

lim
n→∞

|fm − fkn
|pdx ≤ lim inf

n→∞

ˆ
Ω

|fm − fkn
|pdx ≤ εp

8



《泛函分析》课堂笔记 § 1.2 压缩映射原理

所以 fm − f ∈ Lp(Ω) =⇒ f = fm − (fm − f) ∈ Lp(Ω) □

§ 1.2 压缩映射原理

定义 1.31（不动点）对映射 T : X → X，如果 ∃x∗ ∈ X, s.t. Tx∗ = x∗，则称 x∗ 是 T 的一个不动点

定义 1.32（压缩映射）设有度量空间 (X, d)，对映射 T : X → X，如果 ∃α ∈ (0, 1), s.t.

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X

则称 T 是一个压缩映射压缩映射压缩映射

定理 1.33（压缩映射原理，Banach 不动点定理）完备度量空间到自身的压缩映射一定有不动点，且
不动点唯一

证明 存在性：任取 x0 ∈ X，定义迭代序列

xn+1
def
= Txn, n = 0, 1, 2, · · ·

则

d(xn+1, xn) = d(Txn, Txn−1) ≤ αd(xn, xn−1) ≤ · · · ≤ αnd(x1, x0)

利用上面的估计

d(xn+p, xn) ≤
p∑

k=1

d(xn+k, xn+k−1) ≤
p∑

k=1

αn+k−1d(x1, x0)

≤ αn

1− α
d(x1, x0)

即 {xn}∞n=1 是 X 中的基本列，由 X 完备知，∃x∗ ∈ X, s.t. d(xn, x∗)→ 0 as n→∞，接下来证明 x∗ 是

不动点，因为

d(Tx∗, x∗) ≤ d(Tx∗, Txn) + d(Txn, xn) + d(xn, x∗)

≤ αd(x∗, xn) + d(xn+1, xn) + d(xn, x∗)→ 0

而 LHS 与 n 无关，这就说明 d(Tx∗, x∗) = 0，即 Tx∗ = x∗，即 x∗ 为所求不动点

唯一性：假设除了 x∗ 外还有一个不动点 y，即 Ty = y，则

d(y, x∗) = d(Ty, Tx∗) ≤ αd(y, x∗) =⇒ d(y, x∗) = 0

即 y = x∗，不动点唯一 □

评价 完备性不可去，考虑
(
(0, 1), d

)
, d(x, y) = |x− y|，考虑映射

T : (0, 1) −→ (0, 1)

x 7−→ 1

2
x

9



《泛函分析》课堂笔记 § 1.3 完备化

没有不动点

习题 1.34 证明：
(1) 完备度量空间的闭子集一定是完备的

(2) 任何度量空间的完备子空间一定是闭子空间

§ 1.3 完备化

定义 1.35（等距同构）设有两个度量空间 (X1, d1), (X2, d2)

(1) 如果映射 T : X1 → X2 满足

d2(Tx, Ty) = d1(x, y), ∀x, y ∈ X1

则称 T 是等距的 (isometry)
(2) 如果等距映射 T : X1 → X2 还是双射，则称 (X1, d1) 与 (X2, d2) 等距同构，称 T 是一个从 X1

到 X2 的等距同构映射

(3) 如果 (X1, d1)与 (X2, d2)的某个子空间 (X0, d2)等距同构，则称 (X1, d1)可等距嵌入到 (X2, d2)，

记为 (X1, d1) ↪→ (X2, d2)，在此意义下，我们可以认为 (X1, d1) 是 (X2, d2) 的子空间

定义 1.36（完备化空间）设有度量空间 (X, d)，如果 (X̃, d̃) 完备，且 (X, d) 与 (X̃, d̃) 的某个稠密
子空间 (X0, d̃) 等距同构，则称 (X̃, d̃) 是 (X, d) 的一个完备化空间

例 1.37 (1) (R, d) 是 (Q, d) 的完备化
(2) C[0, 1] 是 P[0, 1] 的完备化
(3) L1[0, 1] 是 (C[0, 1], d1) 的完备化

定理 1.38 任意度量空间都有其完备化，且在等距同构的意义下，完备化唯一

证明 Step 1. 令
F def

= {(X, d)中的基本列}

记 ξ = {xn}∞n=1 ∈ F , η = {yn}∞n=1 ∈ F，在 F 中引入等价关系

ξ ∼ η def⇐⇒ lim
n→∞

d(xn, yn) = 0

定义 X̃
def
= F/ ∼，以及 X̃ 上的度量

d̃([ξ], [η]) def
= lim

n→∞
d(xn, yn)

其中 {xn}∞n=1, {yn}∞n=1 分别是等价类 [ξ], [η] 的代表元

Claim1：Claim1：Claim1：d̃ 是良定的，且是 X̃ 上的度量

Proof Of Claim : 1◦ 极限存在：|d(xm, ym) − d(xn, yn)| ≤ d(xm, xn) + d(ym, yn) → 0 as m,n → ∞
（见下方备注），因此 {d(xn, yn)}∞n=1 是 R 中的基本列，故 lim

n→∞
d(xn, yn) 存在

10



《泛函分析》课堂笔记 § 1.3 完备化

2◦ d̃([ξ], [η]) 不依赖于 [ξ], [η] 的代表元选取，即证明若 {xn}∞n=1, {x′n}∞n=1 分别是 [ξ] 的两个代表元，

{yn}∞n=1, {y′n}∞n=1 分别是 [η] 的两个代表元，则 lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, y′n)（自行验证）
3◦ 验证 d̃ 是 X̃ 上的度量，这是平凡的

Step 2. 构造稠密子空间：对 x ∈ X，记 ξx
def
= (x, x, · · · )（常驻点列，接下来的下标若在右下角则都

表示常驻点列），设 X0
def
= {[ξx] : x ∈ X}，令

T : X −→ X0

x 7−→ [ξx]

容易验证 T 是 (X, d) 到 (X0, d̃) 的等距同构映射
Claim2：Claim2：Claim2：X0

dense
⊂ X̃，即 X0 是 X̃ 的稠密子空间

Proof Of Claim : ∀[ξ] ∈ X̃，任取代表元 {xn}∞n=1，因为

lim
n→∞

d̃([ξxn
], [ξ]) = lim

n→∞
lim

m→∞
d(xn, xm) = 0

即我们找到了 [ξxn
]→ [ξ]

Step 3. (X̃, d̃) 是完备度量空间
设 {[ξ(k)]}∞k=1 是 (X̃, d̃) 的任一基本列，任取 {x(k)n }∞n=1 为 [ξ(k)] 的一个代表元，则对 ∀k ∈ N, ∃nk ∈

N, s.t.
d̃([ξ(k)], [ξ

x
(k)
nk

]) <
1

k

因此

d̃([ξ
x
(k)
nk

], [ξ
x
(j)
nj

]) ≤ d̃([ξ
x
(k)
nk

], [ξ(k)]) + d̃([ξ(k)], [ξ(j)]) + d̃([ξ(j)], [ξ
x
(j)
nj

])→ 0, as k, j →∞

即 {[ξ
x
(k)
nk

]}∞k=1 是 (X0, d̃) 中的基本列，由 T 是等距同构知，ξ′
def
= {x(k)nk }∞k=1 是 (X, d) 中的基本列，故

ξ′ ∈ F , [ξ′] ∈ X̃，且
lim
k→∞

d̃([ξ′], [ξ
x
(k)
nk

]) = lim
k→∞

lim
j→∞

d(x
n
(j)
j
, x

n
(k)
k
) = 0

故
d̃([ξ(k)], [ξ′]) ≤ d̃([ξ(k)], [ξ

x
(k)
nk

]) + d̃([ξ
x
(k)
nk

], [ξ′])

→ 0 as k →∞

即 [ξ′] 为基本列 {[ξ(k)]}∞k=1 的极限

Step 4. 唯一性（等距同构意义下）
设 (X ′, d′) 是 (X, d) 的另一完备化，因此 ∃(x′0, d′)

dense
⊂ (X ′, d′), ∃T : X → X ′

0 是等距同构，下证

X ′, X̃ 等距同构

(X0, d̃) (X̃, d̃)

(X, d)

(X ′
0, d′) (X ′, d′)

dense

φ Φ

T

T ′

dense

11
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定义 ϕ = T ′ ◦ T−1，则 ϕ 是由 X0 到 X ′
0 的等距同构

Claim4：Claim4：Claim4：ϕ 可延拓为 X̃ 到 X ′ 的等距同构 Φ

Proof Of Claim : ∀[ξ] ∈ X̃, ∃[ξ(n)] ∈ X0, s.t. d̃([ξ(n)], [ξ]) → 0 as n → ∞（这是因为 X0

dense
⊂

X̃），又因为 ϕ 是等距同构，所以 {ϕ([ξ(n)])}∞n=1 是 (X ′, d′) 中的基本列，由 X ′ 完备知，存在 y ∈
X ′, s.t. d′(ϕ([ξ(n)]), y)→ 0 as n→∞，定义映射

Φ : X̃ −→ X ′

[ξ] 7−→ y

可以验证 Φ 是等距同构映射（留作习题） □

评价 上述证明过程中用到了

|d(a, b)− d(c, d)| ≤ d(a, c) + d(b, d)

这是因为
|d(a, b)− d(c, d)| ≤ |d(a, b)− d(a, d)|+ |d(a, d)− d(c, d)|

≤ d(b, d) + d(a, c)

评价 (X, d) 等距同构←→ (X0, d̃)
dense
⊂ (X̃, d̃)

§ 1.4 紧性
回顾数分中的 Bolzano-Weierstrass 定理（列紧性定理）

定理 1.39 Rn 中的任意有界点列一定有收敛子列

以及 Heine-Borel 定理（有限覆盖定理，紧集）

定理 1.40 Rn 中有界闭集的任意开覆盖都有有限子覆盖

我们将这些定理推广到度量空间中

定义 1.41（紧与列紧）设 (X, d) 是度量空间，A ⊂ X
(1) 如果一族开集 {Gα}α∈I , s.t. A ⊂

⋃
α∈I

Gα，则称之为 A 的一个开覆盖

(2) 如果 A 的任意一个开覆盖均有有限子覆盖，即 ∃α1, · · · , αn ∈ I, s.t. A ⊂
n⋃

i=1

Gαi
，则称 A 是紧

的

(3) 如果 A 中任意点列都有收敛的子列，则称 A 是列紧的（不一定要求极限在 A 中）

(4) 如果 A 中任意点列都有在 A 中收敛的子列，则称 A 是自列紧的

(5) 如果 X 自身是列紧的，则称 (X, d) 是列紧空间

定理 1.42 在 Rn 中

列紧
B−W⇐⇒ 有界

自列紧 ⇐⇒ 有界闭
H−B⇐⇒ 紧

12
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但是在一般度量空间中，就没有像 Rn 中那么好的性质，考虑下面的例子

例 1.43 考虑平方可和数列空间 l2 =

{
{xn}∞n=1

∣∣∣∣ ∞∑
k=1

|xn|2 <∞
}
，其中度量定义为

d(x, y) =
(

∞∑
k=1

|xn − yn|2
) 1

2

定义 en = (0, · · · , 0︸ ︷︷ ︸
n−1个

, 1, 0, · · · ), n = 1, 2, · · ·，则 {en}∞n=1 有界，但是它没有收敛子列，这是因为

∀i 6= j, d(ei, ej) =
√
2 ↛ 0

即有界推不出列紧有界推不出列紧有界推不出列紧

命题 1.44 (1) 列紧空间中的任意集合都列紧，任意闭集都自列紧

(2) 列紧空间一定完备

证明 (1) 显然，下证 (2)，设 {xn}∞n=1 是列紧空间 (X, d) 中的基本列，则它有收敛子列 xnk
→ x0，所以

d(xn, x0) ≤ d(xn, xnk
) + d(xnk

, x0)→ 0, as k →∞

□

定义 1.45（ε-网、完全有界）设有度量空间 (X, d), A ⊂ X，给定 ε > 0

(1) 称 Nε ⊂ A 是 A 的一个 ε-网是指
A ⊂

⋃
y∈Nε

B(y, ε)

(⇐⇒ ∀x ∈ A, ∃y ∈ Nε, s.t. d(x, y) < ε)

(2) 如果 ∀ε > 0, A 都有一个有穷的 ε-网 Nε（即 #Nε <∞），则称 A 完全有界

评价 完全有界 =⇒有界，反之未必，还是考虑例1.43中的 {en}∞n=1，它有界，但是取 ε = 1
2
，由于 d(ei, ej) =√

2, ∀i 6= j，则对 ∀k ∈ N, B(ek,
1
2
) ∩ {en}∞n=1 = {ek}，因此它没有有穷的 1

2
-网

定理 1.46（Hausdorff）
(1) 在度量空间中，列紧 =⇒ 完全有界
(2) 在完备度量空间中，列紧 ⇐⇒ 完全有界

证明 (1) 假设 A 列紧但不完全有界，则 ∃ε0 > 0, s.t. 任意有限个以 A 中的点为中心，ε0 为半径的球

都不能覆盖 A，任取 x1 ∈ A，则
∃x2 ∈ A\B(x1, ε0)

∃x3 ∈ A\
2⋃

k=1

B(xk, ε0)

· · · · · · · · ·

13
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这样我们就得到了点列 {xn}∞n=1 ⊂ A, s.t. xn /∈
n−1⋃
k=1

B(xk, ε0), ∀n ∈ N，故

d(xm, xn) ≥ ε0, ∀m 6= n

故 {xn}∞n=1 没有收敛子列，与 A 列紧矛盾！

(2) 只需证明完全有界 =⇒ 列紧，设 (X, d) 完备，A 完全有界，下面证明 A 列紧，对 ∀{xn}∞n=1 ⊂ A
·对 ε = 1，A 有有穷的不同的 N1 = {y(1)1 , · · · , y(1)n1 }，使得 {xn}∞n=1 ⊂ A ⊂

n1⋃
k=1

B(y
(1)
k , 1) =⇒ 一

定存在某个 y
(1)
k ∈ N1（不妨记为 y1），使得 B(y1, 1) 包含 {xk}∞k=1 中的无穷多项，故存在 {xn}∞n=1

的子列 {x(1)n }∞n=1 ⊂ B(y1, 1)

·对 ε = 1
2
，同上操作，存在 y2 ∈ N 1

2
, s.t. ∃{x(1)n }∞n=1 的子列 {x

(2)
n }∞n=1 ⊂ B(y2,

1
2
)

不断重复上述步骤，我们得到

x
(1)
1 x

(1)
2 x

(1)
3 · · · ∈ B(y1, 1)

x
(2)
1 x

(2)
2 x

(2)
3 · · · ∈ B(y2,

1
2
)

x
(3)
1 x

(3)
2 x

(3)
3 · · · ∈ B(y3,

1
3
)

...
...

...

取对角线子列 {x(n)n }∞n=1，使得 x
(n)
n ∈

n⋂
k=1

B(yk,
1
k
)，所以对 ∀n, p ∈ N，x(n+p)

n+p , x
(n)
n ∈ B(yn,

1
n
)，故

d(x(n+p)
n+p , x(n)n ) ≤ 2

n
, ∀n, p ∈ N

所以 {x(n)n }∞n=1 是 (X, d) 中的基本列，再由 X 完备知 {x(n)n }∞n=1 收敛 □

定理 1.47 在度量空间中，紧 ⇐⇒ 自列紧

证明 (=⇒) :

Step1. 证明紧 =⇒ 闭
设 A 是紧集，我们断言 X\A 是开集：对 ∀x ∈ X\A ，{B(y, 1

3
d(y, x))}y∈A 是 A 的开覆盖，由 A

是紧集知，∃y1, · · · , yN ∈ A, s.t. A ⊂
N⋃

k=1

B(yk,
1
3
d(yk, x))，令

δ
def
=

1

3
min

1≤k≤N
d(yk, x)

则 B(x, δ) ⊂ X\A（因为 B(x, δ) ∩B(yk,
1
3
d(x, yk)) = ∅, ∀1 ≤ k ≤ N），故 X\A 是开集

Step2. 证明紧 =⇒ 列紧
假设 A 紧但不列紧，则 ∃{xn}∞n=1 ⊂ A 无收敛子列，不妨设 xn, n = 1, 2, · · · 互不相同，令

Sk
def
= {xn}∞n=1\{xk}, k = 1, 2, · · ·

14
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则 Sk 是闭集（Sk 无聚点 =⇒ Sk = Sk），故 X\Sk 是开集，且

∞⋃
k=1

(X\Sk) = X

∖(
∞⋂
k=1

Sk

)
= X\∅ = X ⊃ A

即 {X\Sn}∞n=1 是 A 的开覆盖，由 A 是紧集知，∃N ∈ N, s.t.

A ⊂
N⋃

k=1

(X\Sk) = X

∖(
N⋂

k=1

Sk

)
= X\{xn}∞n=N+1

另一方面由假设有 {xn}∞n=1 ⊂ A，故 {xn}∞n=1 ⊂ A ⊂ X\{xn}∞n=N+1 矛盾！

因此列紧 + 闭 =⇒ 自列紧
(⇐=) : 设 A 是自列紧的，下面证明 A 是紧集，假设 A 不紧，则 ∃{Gα}α∈I 是 A 的开覆盖，使得

任意有限个 Gα 都不能覆盖 A，又因为 A 是列紧的，所以 A 完全有界，则对 ∀n ∈ N，存在有穷的 1
n
网

N 1
n
= {y(n)1 , · · · , y(n)mn}, s.t.

A ⊂
mn⋃
k=1

B(y
(n)
k ,

1

n
)

由不紧的假设知，对 ∀n, ∃yn ∈ N 1
n
, s.t. B(yn,

1
n
) 不能被有限多个 Gα 覆盖（否则每个 yn ∈ N 1

n
, B(yn,

1
n
)

都能被有限多个 Gα 覆盖，故 A 可以被有限多个 Gα 覆盖，与不紧的假设矛盾！），又由 A 自列紧知，

{yn} 有收敛子列 {ynk
} 收敛到 y0 ∈ A，设 y0 ∈ Gα0

，由 Gα0
是开集，则 ∃δ > 0, s.t. y0 ∈ B(y0, δ) ⊂ Gα0

，

由 ynk
→ y0 知，当 k 充分大时，d(ynk

, y0) <
δ
2
，特别地当 nk >

2
δ
时，对 ∀x ∈ B(ynk

, 1
nk
) 有

d(x, y0) ≤ d(x, ynk
) + d(ynk

, y0)

≤ 1

nk

+
δ

2
< δ

即 B(ynk
, 1
nk
) ⊂ B(y0, δ) ⊂ Gα0

，这与 B(ynk
, 1
nk
) 不能被有限多个 Gα 覆盖矛盾！ □

总结如下

有界闭 紧 自列紧 列紧 完全有界 有界

X=Rn
闭 X完备 X=Rn

X=Rn

定理 1.48 列紧空间一定可分

证明 对 ∀n ∈ N，取列紧空间 X 的一个有穷 1
n

-网 N 1
n
，不难验证

∞⋃
n=1

N 1
n

dense
⊂ X □

习题 1.49 设 (M,ρ) 是一个列紧空间，考虑

C(M)
def
= M 上的连续函数全体

定义 C(M) 上的度量

d(f, g) def
= max

x∈M
|f(x)− g(x)|

15
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则 d 是 C(M) 上的度量，(C(M), d) 是度量空间且完备

定义 1.50（等度连续）称一族函数 F ⊂ C(M) 是等度连续的，若 ∀ε > 0, ∃δ > 0, s.t.

|f(x)− f(x′)| < ε, ∀f ∈ F , ∀x, x′ ∈M with ρ(x, x′) < δ

定理 1.51（Arzela-Ascoli）设 (M,ρ) 是一个列紧空间，则

F ⊂ C(M)列紧 ⇐⇒ F作为函数族

一致有界等度连续

证明 (=⇒) : 由于 C(M) 是完备空间，所以 F 列紧 ⇐⇒ F 完全有界 =⇒ F 有界，记 0 为零函数，则

∃R > 0, s.t. d(f, 0) < R, ∀f ∈ F

即 max
x∈M
|f(x)| < R，故 F 一致有界，下证 F 等度连续

对 ∀ε > 0，由 F 完全有界知，∀ε > 0，存在 ε
3
-网 N ε

3
= {f1, · · · , fm}, s.t.

F ⊂
m⋃

k=1

B(fk,
ε

3
)

由 fk 的连续性知，∃δk > 0, s.t. |fk(x′) − fk(x′′)| < ε
3
, ∀x, x′ ∈ M with ρ(x′, x′′) < δk，令 δ = min

1≤k≤n
δk，

则

|fk(x′)− fk(x′′)| <
ε

3
, ∀x′, x′′ ∈M with ρ(x′, x′′) < δ, ∀k ∈ {1, 2, · · · ,m}

对 ∀f ∈ F , ∃k ∈ {1, 2, · · · ,m}, s.t. d(f, fk) < ε
3
，所以

|f(x′)− f(x′′)| ≤ |f(x′)− fk(x′)|+ |fk(x′)− fk(x′′)|+ |fk(x′′)− f(x′′)|

< 2d(f, fk) +
ε

3
< ε

对 ∀x′, x′′ ∈M with ρ(x′, x′′) < δ, ∀f ∈ F 均成立，即 F 等度连续
(⇐=) :设 F 等度连续且一致有界，由 f 等度连续知 ∀ε > 0, ∃δ > 0, s.t. |f(x′)−f(x′′)| < ε

4
, ∀x′, x′′ ∈

M with ρ(x′, x′′) < δ, ∀f ∈ F；由 M 列紧知，存在 M 的有穷 δ-网 Nδ = {x1, · · · , xN}，定义映射

T : F −→ RN

f 7−→ (f(x1), · · · , f(xN ))

F 一致有界 =⇒ R
def
= sup

f∈F
max
x∈M
|f(x)| <∞，因此

(
N∑
i=1

|f(xi)|2
) 1

2

≤
√
NR
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因此 T (F) 是 RN 中的有界集，故它列紧

Claim：Claim：Claim：设 Ñ ε
4
= {Tf1, · · · , T fm} 是 T (F) 的 ε

4
-网，则 {f1, · · · , fm} 是 F 的 ε-网

Proof Of Claim : 对 ∀f ∈ F , ∃k ∈ {1, · · · ,m}, s.t. dRN (Tf, Tfk) <
ε
4
，对 ∀x ∈M, ∃xj ∈ Nδ, s.t.

ρ(x, xj) < δ，所以

|f(x)− fk(x)| ≤ |f(x)− f(xj)|+ |f(xj)− fk(xj)|+ |fk(xj)− fk(x)|

<
ε

4
+ dRN (Tf, Tfk) +

ε

4
<

3

4
ε

取上确界即得 d(f, fk) ≤ 3ε
4
< ε □

定理 1.52（Riesz-Frecher-Kolmogorov）设 1 ≤ p <∞,F ⊂ Lp(Rn) 列紧当且仅当

(1) F 有界，即 sup
f∈F
||f ||p <∞

(2) F 等度 Lp 预紧 (Precompact)：∀ε > 0, ∃R > 0, s.t.
´
|x|>R

|f(x)|pdx < εp, ∀f ∈ F
(3) 等度 Lp 范数连续：∀ε > 0, ∃δ > 0, s.t. ||τhf − f ||p < ε, ∀|h| < δ, ∀f ∈ F

评价 其中 (τhf)(x) = f(x− h)，该定理仅介绍，具体证明可以参考 H.Brezis 《F.A,Sobolev spaces and
PDE》Thm4.26,Cor4.27

定理 1.53 对 1 ≤ p <∞，记 lp
def
=

{
{xk}∞k=1

∣∣∣∣ ∞∑
k=1

|xk|p <∞
}
，其上的度量定义为

dp(x, y)
def
=

(
∞∑
k=1

|xk − yk|p
) 1

p

则

A ⊂ lp列紧 ⇐⇒


(1) A有界

(2) ∀ε > 0, ∃N, s.t.
∞∑

k=N+1

|xk|p < εp, ∀x = {xk}∞k=1 ∈ A

证明 (=⇒) : 首先列紧 =⇒ 完全有界 =⇒ 有界，其次由 A ⊂ lp 完全有界知，存在有穷 ε
2
-网

N ε
2
= {a(1), · · · , a(m)}

对于每个 a(i)，由
∞∑
k=1

|a(i)k |p <∞ 知，存在 Ni, s.t.
∞∑

k=Ni+1

|a(i)k |p <
(
ε
2

)p
，记 N = max{N1, · · · , Nm}，于

是
∞∑

k=N+1

|a(i)k |p <
(
ε
2

)p
, ∀1 ≤ i ≤ m，所以对 ∀x ∈ A, ∃a(i), s.t. d(x, a(i)) < ε

2
，故

(
∞∑

k=N+1

|xk|p
) 1

p

≤

(
∞∑

k=N+1

|xk − a(i)k |
p

) 1
p

+

(
∞∑

k=N+1

|a(i)k |
p

) 1
p

≤ d(x, a(i)) + ε

2
< ε

17
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(⇐=) : 对 ∀η > 0，取 ε = η

(2p+1+1)
1
p
，则 ∃N, s.t.

∞∑
k=N+1

|xk|p < εp，定义

TN : A −→ RN

(x1, x2, · · · ) 7−→ (x1, · · · , xN )

因为 A 有界，所以 ∃M > 0, s.t.
∞∑
k=1

|xk|p ≤Mp, ∀x ∈ A，因此 |xk| < M, ∀k, ∀x = {xk}∞k=1 ∈ A，因此

(
N∑

k=1

|xk|2
) 1

2

≤
√
NM, ∀x ∈ A

因此 TN (A) 是 Rn 中的有界集，故列紧，则 ∃TN (A) 中的有穷 ε
N

-网

{TNx
(1), TNx

(2), · · · , TNx
(m)}

Claim：Claim：Claim：{x(1), · · · , x(m)} 是 A 的 η-网

Proof Of Claim : ∀x ∈ A, ∃j ∈ {1, 2, · · · ,m}, s.t. d(TNx, TNx
(j)) < ε

N
，而 LHS =

(
N∑

k=1

|xk − x(j)k |2
) 1

2

，

所以 |xk − x(j)k | < ε
N
, ∀k ∈ {1, 2, · · · ,m}，所以

dp(x, x
(j))p = ||x− x(j)||pp

=
N∑

k=1

|xk − x(j)k |
p +

∞∑
k=N+1

|xk − x(j)k |
p

≤ N ·
( ε
N

)p
+

∞∑
k=N+1

2p(|xk|p + |x(j)k |
p)

<
εp

Np−1
+ 2p · 2εp < (2p+1 + 1)εp = ηp

即 x ∈ B(x(j), η) □

评价

|x− y|p ≤ (|x|+ |y|)p ≤
(
2max{|x|, |y|}

)p
= 2p

(
max{|x|, |y|}

)p ≤ 2p(|x|p + |y|p)

习题 1.54 证明：Hilbert Cube
Q

def
= {x ∈ l2 : |xk| ≤ 2−k, ∀k}

是 l2 中的列紧集

§ 1.5 赋范线性空间

定义 1.55（向量空间）设 X 是非空集合，K 是数域（本课程中 K = R 或 C），定义 X 上的两个运

算加法和数乘

+ : X ×X −→ X

(x, y) 7−→ x+ y

· : K×X −→ X

(α, x) 7−→ αx

18
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若它们满足如下八条公理

(1) 结合律：(x+ y) + z = x+ (y + z), ∀x, y, z ∈ X
(2) 交换律：x+ y = y + x, ∀x, y ∈ X
(3) 零元存在：∃θ ∈ X, s.t. θ + x = x, ∀x ∈ X
(4) 负元存在：∀x ∈ X, ∃y ∈ X, s.t. x+ y = 0

(5) 幺元存在：∃1 ∈ K, s.t. 1 · x = x, ∀x ∈ X
(6) 结合律：(αβ)x = α(βx), ∀α, β ∈ K, x ∈ X
(7) 左分配律：(α+ β)x = αx+ βx, ∀α, β ∈ K, x ∈ X
(8) 右分配律：α(x+ y) = αx+ αy, ∀α ∈ K, x, y ∈ X
则称 (X,+, ·) 为 K 上的向量空间，X 中的元素称为向量

定义 1.56 设 A ⊂ X，记

Span(A) def
=

{
n∑

i=1

λixi : xi ∈ A, λi ∈ K, n ∈ N

}

为 A 张成的向量空间，如果 A 线性无关且 Span(A) = X，则称 A 是 X 的一个 Hamel 基（或代数
基，线性基）

定理 1.57 任一向量空间都有 Hamel 基

定义 1.58（向量空间的维数）如果向量空间 X 的 Hamel 基 A 是有限集，则定义 dimX = #A，否
则记 dimX =∞

定义 1.59（范数、赋范空间、Banach 空间）设 X 是 R 上的向量空间，如果函数 || · || : X → R 满足
(1) 正定性：||x|| ≥ 0, ∀x ∈ X，且 ||x|| = 0 ⇐⇒ x = 0

(2) 齐次性：||αx|| = |α| · ||x||, ∀x ∈ X,α ∈ R
(3) 三角不等式：||x+ y|| ≤ ||x||+ ||y||, ∀x, y ∈ X
则称 || · || 是 X 上的一个范数，称 (X, || · ||) 为一个赋范空间，考虑 d(x, y) = ||x− y||，容易验证它
是一个度量，称为由 || · || 诱导的度量，如果 (X, d) 完备，则称 (X, || · ||) 是 Banach 空间

以下是几个常见的 Banach 空间的例子

19
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函数空间 数列空间

Lp(1 ≤ p <∞) lp(1 ≤ p <∞)

||f ||p =
(´
|f |p

) 1
p ||x||p =

(
∞∑
k=1

|xk|p
) 1

p

L∞ =本性有界可测函数空间 l∞ =有界数列全体

||f ||∞ = esssup
x∈Ω

|f(x)| = inf{M > 0 : µ({|f | ≥M}) = 0} ||x||∞ = sup
k
|xk|

C(M) c =收敛数列全体(c0 =收敛到 0 的数列全体)

||f || = max
x∈M
|f(x)| ||x|| = sup

k
|xk|

评价 我们有子空间包含关系 c0 ↪−→ c ↪−→ l∞

例 1.60 设 Ω ⊂ Rn 是有界域，定义

Ck(Ω)
def
= Ω上 k 次连续可微的函数全体

定义 Ck(Ω) 上的范数

||u|| def
= max

|α|≤k
max
x∈Ω
|∂αu(x)|

其中 α = (α1, · · · , αn) ∈ Zn
+, |α| = α1 + · · ·+ αn，且 ∂α = ∂|α|

∂x
α1
1 ···∂xαn

n
则 (Ck(Ω), || · ||) 是 Banach 空间

例 1.61 定义 Ck(Ω) 上的范数

||u||k,p =

∑
|α|≤k

ˆ
Ω

|∂αu|p
 1

p

, 1 ≤ p <∞

记 S
def
= {u ∈ Ck(Ω) : ||u||k,p <∞}，定义 Hk,p(Ω)

def
= S 的完备化，称为 Sobolev 空间

定义 1.62（范数的比较）设 X 是向量空间，|| · ||1, || · ||2 是 X 上的范数

(1) 如果 ∀{xk}∞k=1 ⊂ X, ||xk||2 → 0 可以推出 ||xk||1 → 0，则称 || · ||2 比 || · ||1 强，记为 || · ||1 ≲ || · ||2
(2) 如果 || · ||1 ≲ || · ||2 且 || · ||2 ≲ || · ||1，则称 || · ||1, || · ||2 是等价范数，记为 || · ||1 ≈ || · ||2

命题 1.63 || · ||1 ≲ || · ||2 ⇐⇒ ∃C > 0, s.t. ||x||1 ≤ C||x||2, ∀x ∈ X

证明 (⇐=) : 平凡

(=⇒) : 假设不存在这样的 C，则对 ∀n ∈ N, ∃xn ∈ X, s.t. ||xn||1 > n||xn||2，令 yn
def
= xn

||xn||1，则

||yn||2 =
||xn||2
||xn||1

≤ 1

n
→ 0 as n→∞

由 || · ||1 ≲ || · ||2 知，||yn||1 → 0，这与 ||yn||1 = 1, ∀n，矛盾！ □
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推论 1.64 || · ||1 ≈ || · ||2 ⇐⇒ ∃C1, C2 > 0, s.t. C1||x||2 ≤ ||x||1 ≤ C2||x||2

例 1.65 在 Rn 上 || · ||p(∀1 ≤ p ≤ ∞) 均等价

证明

||x||∞ ≤ ||x||p =

(
n∑

k=1

|xk|p
) 1

p

≤ n
1
p ||x||∞

□

定理 1.66 有限维空间上的所有范数都彼此等价

证明 设 dimX = n，设 {e1, · · · , en} 是 X 的一个基，则 ∀x ∈ X 有唯一的表示

x =

n∑
k=1

ξkek, ξk ∈ K, k = 1, 2, · · · , n

定义
T : X −→ Kn

x =
n∑

k=1

ξkek 7−→ (ξ1, · · · , ξn)

则 T 是线性空间的同构，令 |ξ| =
(

n∑
k=1

|ξk|2
) 1

2

, ∀ξ ∈ Kn，定义 ||x||T
def
= |Tx|，则 || · ||T 是 X 上的一个

范数。Claim：Claim：Claim：X 上的任一范数 || · || 都与 || · ||T 等价
定义

ρ : Kn −→ R

ξ 7−→

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

ξkek

∣∣∣∣∣
∣∣∣∣∣

则 ρ 有以下性质

(1) 齐次性：ρ(ξ) = |ξ|ρ( ξ
|ξ|), ∀ξ ∈ Kn\{0}

(2) 连续性：ρ ∈ C(Kn)，这是因为

|ρ(ξ)− ρ(η)| =

∣∣∣∣∣
∣∣∣∣∣∣∣∣ n∑

k=1

ξkek

∣∣∣∣∣∣∣∣− ∣∣∣∣∣∣∣∣ n∑
k=1

ηkek

∣∣∣∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

(ξk − ηk)ek

∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
k=1

|ξk − ηk| · ||ek||

≤

(
n∑

k=1

||ek||2
) 1

2

|ξ − η| (Cauchy不等式)

令 S1
def
= {ξ ∈ Kn : |ξ| = 1}，即 Kn 中的单位球面，它是紧集，故 ∃C1, C2 ≥ 0, s.t.

C1 = min
ξ∈S1

ρ(ξ), C2 = max
ξ∈S1

ρ(ξ2)
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因此

C1 ≤ ρ
(
ξ

|ξ|

)
≤ C2, ∀ξ ∈ Kn\{0}

再由齐次性知

C1|ξ| ≤ ρ(ξ) ≤ C2|ξ|, ∀ξ ∈ Kn

进而 C1|Tx| ≤ ρ(Tx) ≤ C2|Tx|, ∀x ∈ X，而 ρ(Tx) = ||x||，故

C1||x||T ≤ ||x|| ≤ C2||x||T , ∀x ∈ X

最后我们需要说明 C1 是严格正的，假设 C1 = 0，则 ∃ξ′ ∈ S1, s.t. 0 = ρ(ξ′) =

∣∣∣∣∣∣∣∣ n∑
k=1

ξ′kek

∣∣∣∣∣∣∣∣，因此
n∑

k=1

ξ′kek = 0，由线性无关知 ξ′k = 0, ∀1 ≤ k ≤ n，故 ξ′ = 0 与它在单位球上矛盾！ □

定义 1.67 设 (X, || · ||X), (Y, || · ||Y ) 是赋范空间，如果 ∃T : X → Y 是线性、双射（代数同构），且

T, T−1 均连续，则称 X 与 Y 同构

推论 1.68 同维数的有限维赋范空间彼此同构

证明 假设维数为 n，只需证明它们均与 Kn 同构即可，定义

T : X −→ Kn

x =
n∑

k=1

ξkek 7−→ (ξ1, · · · , ξn)

由上证明知 ∃C1, C2 > 0, s.t. C1|Tx| ≤ ||x|| ≤ C2|Tx|, ∀x ∈ X，前一个不等式保证 T 连续，后一个不等

式保证 T−1 连续 □

推论 1.69 有限维赋范空间一定是 Banach 空间

证明 还是考虑 C1|Tx| ≤ ||x|| ≤ C2|Tx|, ∀x ∈ X，设 {xn}∞n=1 是 X 的任一基本列，则 |Txi − Txj | ≤
1
C1
||xi−xj || → 0, as i, j →∞，因此 {Txn}∞n=1 是 Kn 中的基本列，由 Kn 完备知 ∃ξ ∈ Kn, s.t. Txk → ξ，

所以

||xk − T−1ξ|| ≤ C2|Txk − ξ| → 0

□

推论 1.70 任一赋范空间的有限维子空间一定是闭子空间

定理 1.71 设有赋范空间 (X, || · ||)，X 的单位球面列紧 ⇐⇒ dimX <∞
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证明 先证明 (⇐=) : 设 dimX = n，考虑代数同构

X −→ Kn

x =
n∑

k=1

ξkek 7−→ ξ = (ξ1, · · · , ξn)

使得 ∃C1, C2 > 0, C1|Tx| ≤ ||x|| ≤ C2|Tx|, ∀x ∈ X，因此 |Tx| ≤ 1
C1
, ∀x ∈ S1（单位球面），故 T (S1) 是

Kn 中的有界集，故列紧，则 ∀{xk}∞k=1 ⊂ S1, ∃{Txkj
}∞j=1, s.t. Txkj

→ ξ ∈ Kn，因此 xkj
→ T−1ξ ∈ X

推论 1.72 无穷维赋范空间中的单位球面一定不列紧

引理 1.73（Riesz）设有赋范空间 (X, || · ||), Y 是 X 的真闭子空间，则对 ∀ε > 0, ∃e ∈ X with ||e|| =
1, s.t.

dist (e, Y ) ≥ 1− ε

证明 由 Y 6= X 知，∃x ∈ X\Y，令

d = dist (x, Y ) = inf
y∈Y
||x− y||

则 d > 0（如果 d = 0，则 ∃{yn} ⊂ Y, s.t. ||x − yn|| → d 如果 d = 0，则 yn → x，由 Y 闭集知 x ∈ Y，
矛盾！），由下确界的定义，对 ∀ε > 0, ∃y0 ∈ Y, s.t. d ≤ ||x − y0|| < d

1−ε
，令 e = x−y0

||x−y0||，则 e /∈ Y 且
||e|| = 1，此时对 ∀z ∈ Y

||e− z|| =
∣∣∣∣∣∣∣∣ x− y0||x− y0||

− z
∣∣∣∣∣∣∣∣

=
1

||x− y0||
∣∣∣∣x− (y0 + ||x− y0||z)

∣∣∣∣
>

1− ε
d
· d = 1− ε

其中 y0 + ||x− y0||z ∈ Y □

接下来我们可以证明定理1.71的 (=⇒)

证明 (=⇒) 假设 dimX =∞，则 ∃{en}∞n=1 线性无关（可取 Hamel 基的一个可数无穷的子集），令

Xn
def
= Span{e1, · · · , en}

则由推论1.70知 Xn−1 是 Xn 的闭子空间，则由 Riesz 引理知，对 ∀n ∈ N, ∃xn ∈ Xn with ||xn|| = 1，使

得 dist (xn, Xn−1) ≥ 1
2
，进而 d(xn, xm) ≥ 1

2
, ∀n 6= m，因此 {xn}∞n=1 没有收敛子列，这与 S1 列紧矛盾！

□

接下来介绍最佳逼近元：给定一个函数，用一组给定的函数的线性组合去逼近，求最佳逼近元；抽象

成数学语言即：给定 x ∈ X, {e1, · · · , en} ⊂ X（不妨设它们线性无关），是否 ∃λ1, · · · , λn ∈ K, s.t.∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

λkek

∣∣∣∣∣
∣∣∣∣∣ = min

ξ∈Kn

∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

ξkek

∣∣∣∣∣
∣∣∣∣∣
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或者说，令 M
def
= span{e1, · · · , en}，是否 ∀x ∈ X, ∃y ∈M, s.t. ||x− y|| = dist (x,M)？

定理 1.74 设有赋范空间 (X, ||·||)，设 {e1, · · · , en} ⊂ X 线性无关，则对 ∀x ∈ X, ∃λ1, · · · , λn ∈ K, s.t.∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

λkek

∣∣∣∣∣
∣∣∣∣∣ = min

ξ∈Kn

∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

ξkek

∣∣∣∣∣
∣∣∣∣∣

证明 固定 x ∈ X，定义
f : Kn −→ R

ξ 7−→

∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

ξkek

∣∣∣∣∣
∣∣∣∣∣

我们有如下观察

(1) f ∈ C(Kn)

(2) f(ξ) ≥ ||
∑n

k=1 ξkek|| − ||x||
(3) p(ξ)

def
= ||

∑n
k=1 ξkek|| 是 Kn 上的一个范数

因此 ∃c > 0, s.t. p(ξ) ≥ C|ξ|, ∀ξ ∈ Kn（其中 | · | 是欧氏范数），故

f(ξ) ≥ C|ξ| − ||x|| → +∞ as |ξ| → +∞

又由 f 连续知，f 在 Kn 中有最小值（因为 f 在有界部分有最小值，而在无界部分趋于正无穷，故有全

局的最小值），即最佳逼近元存在 □

定义 1.75 称赋范空间 (X, || · ||) 严格凸，若 ∀x, y ∈ X with ||x|| = ||y|| = 1, x 6= y，满足

||tx+ (1− t)y|| < 1, t ∈ (0, 1)

例 1.76 (R2, || · ||2) 严格凸，但是 (R2, || · ||∞) 不是严格凸的

例 1.77 Lp(1 < p <∞) 严格凸

证明 对 ∀f 6= g ∈ Lp，且 ||f ||p = ||g||p = 1，假设 ∃t ∈ (0, 1), s.t.

||tf + (1− t)g||p = 1 = t||f ||p + (1− t)||g||p = ||tf ||p + ||(1− t)g||p

故此时 Minkowski 不等式取等，则 ∃λ1, λ2 不同时为零，使得 λ1tf = λ2(1− t)g a.e，两边同时取范数得
||λ1tf ||p = ||λ2(1− t)g||p，则只能是 λ1t = λ2(1− t)，所以 f = g a.e，矛盾！ □

例 1.78 L1[0, 1], L∞[0, 1] 不是严格凸的，以下给出反例

在 L1[0, 1] 中，考虑 f ≡ 1, g = 2t，则 ||f ||1 = ||g||1 = 1 =
∣∣∣∣ f+g

2

∣∣∣∣
1

在 L∞[0, 1] 中，考虑 f(t) ≡ 1, g(t) = t，则 ||f ||∞ = ||g||∞ = 1 =
∣∣∣∣ f+g

2

∣∣∣∣
∞
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定理 1.79 严格凸的赋范空间中，给定向量到给定有限维子空间的最佳逼近元是唯一的

证明 设 x ∈ X,M 是 X 的子空间且 dimM <∞，假设 ∃y, z ∈M, s.t. ||x−y|| = ||x−z|| = dist (x,M)
def
=

d，如果 d = 0，则 y = z = x，平凡成立；下面设 d > 0，则

1

d
||x− [ty + (1− t)z]|| = 1

d
||t(x− y) + (1− t)(x− z)||

=

∣∣∣∣∣∣∣∣tx− yd + (1− t)x− z
d

∣∣∣∣∣∣∣∣ < 1

这就说明 ||x− [ty + (1− t)z]|| < d，这与 d 的定义矛盾！ □

§ 1.6 商空间

定义 1.80（商空间）设有一个赋范空间 (X, || · ||), X0
闭
↪−→ X（X0 是 X 的闭子空间），定义 X 上的

等价关系 x ∼ y ⇐⇒ x− y ∈ X0，则它的等价类全体（商集）为

X/X0 = {[x] : x ∈ X}

定义商集上的加法与数乘为 [x] + [y]
def
= [x+ y]

λ[x]
def
= [λx]

容易验证 X/X0 是向量空间，称为 X mod X0（作为向量空间）的商空间

评价 良定性？

定义 1.81（商空间的范数）定义商空间中的范数

||[x]||∗
def
= inf

y∈[x]
||y||

评价

||[x]||∗
def
= inf

y∈[x]
||y|| = inf

m∈X0

||x+m||

定理 1.82 (1) || · ||∗ 是 X/X0 上的一个范数

(2) 如果 (X, || · ||) 是 Banach 空间，则 (X/X0, || · ||∗) 也是 Banach 空间

证明 (1). 验证三条公理

•（正定性）：||[x]||∗ ≥ 0 平凡；若 ||[x]||∗ = 0，则 ∃yn ∈ [x], n = 1, 2, · · · , s.t. ||yn|| → 0，进而 yn → 0，

由 X0 是闭集知，[x] = x+X0 也是闭集，故 0 ∈ [x]

•（齐次性）：平凡
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•（三角不等式）：要证明 ||[x] + [y]||∗ ≤ ||[x]||∗ + ||[y]||∗，对 ∀ε > 0, ∃x′ ∈ [x], y′ ∈ [y], s.t.||x′|| ≤ ||[x]||∗ + ε
2

||y′|| ≤ ||[y]||∗ + ε
2

则 ||x′||+ ||y′|| ≤ ||[x]||∗ + ||[y]||∗ + ε，而 x′ + y′ ∈ [x+ y]，则 ||x′ + y′|| ≥ ||[x+ y]||∗，即

||[x+ y]||∗ ≤ ||x′ + y′|| ≤ ||x′||+ ||y′|| ≤ ||[x]||∗ + ||[y]||∗ + ε

令 ε→ 0+ 即得证

(2). 设 {[xn]}∞n=1 是 X/X0 中的任一基本列，则 ∀ε > 0, ∃N ∈ N, s.t. ∀m,n > N

||[xn]− [xm]||∗ < ε

对 ∀k ∈ N，取 ε = 1
2k+1 , ∃nk ∈ N s.t. ||[xnk

] − [xm]||∗ < 1
2k+1 , ∀m ≥ nk，因此我们找到了子列

{[xnk
]}∞k=1, s.t. ||[xnk

]− [xnk+1
]||∗ < 1

2k+1 , ∀k，所以存在 ynk
∈ [xnk

− xnk+1
], s.t.

||ynk
|| < ||[xnk

− xnk+1
]||∗ +

1

2k+1
<

1

2k

令 z1 = xn1
, z2 = z1 − yn1

, · · · , zk = zk−1 − ynk−1
, · · ·，则

zk = xn1
− yn1

− · · · − ynk−1
∈ [xn1

+ (xn2
− xn1

) + · · ·+ (xnk
− xnk−1

)] = [xnk
]

即 [zk] = [xnk
]，且

||zk − zk+p|| ≤ ||zk − zk+1||+ · · ·+ ||zk+p−1 − zk+p||

= ||ynk
||+ · · ·+ ||ynk+p−1

||

≤ 1

2k
+ · · ·+ 1

2k+p−1
=

1

2k−1

所以 {zk}∞k=1 是 X 中的基本列，故 ∃z ∈ X, s.t. ||zk − z|| → 0 as k →∞，故

||[xnk
]− [z]||∗ = ||[zk]− [z]||∗ ≤ ||zk − z|| → 0 as k →∞

□
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§ 1.7 内积空间

定义 1.83（内积、内积空间）设 X 是数域 K 上的向量空间，如果函数 〈·, ·〉 : X ×X → K 满足
(1)（对第一变元线性）：∀x1, x2, y ∈ X, ∀α, β ∈ K，有

〈αx1 + βx2, y〉 = α 〈x1, y〉+ β 〈x2, y〉

(2)（对第二变元共轭线性）：∀x, y1, y2 ∈ X, ∀α, β ∈ K，有

〈x, αy1 + βy2〉 = α 〈x, y1〉+ β 〈x, y2〉

(3)（共轭对称性）：∀x, y ∈ X, 〈x, y〉 = 〈y, x〉
(4)（二次型正定）：〈x, x〉 ≥ 0, ∀x ∈ X，且 〈x, x〉 = 0 ⇐⇒ x = 0

则称 〈·, ·〉 是 X 上的一个内积，(X, 〈·, ·〉) 称为内积空间

评价 (1) + (3) =⇒ (2)

引理 1.84（Cauchy-Schwarz 不等式）设有内积空间 (X, 〈·, ·〉)，定义 ||x|| def
= 〈x, x〉

1
2，则

| 〈x, y〉 | ≤ ||x|| · ||y|| ∀x, y ∈ X

等号成立 ⇐⇒ ∃λ ∈ K, s.t. x = λy

证明 不妨设 y 6= 0，对 ∀λ ∈ K，因为

0 ≤ 〈x+ λy, x+ λy〉

= 〈x, x〉+ λ 〈y, x〉+ λ 〈x, y〉+ λλ 〈y, y〉

= ||x||2 + 2Re(λ 〈x, y〉) + |λ|2||y||2

取 λ = − ⟨x,y⟩
||y||2，则

0 ≤ ||x||2 − 2
| 〈x, y〉 |2

||y||2
+
| 〈x, y〉 |2

||y||4
· ||y||2 = ||x||2 − | 〈x, y〉 |

2

||y||2

移项即证 □

命题 1.85（内积诱导范数）设有内积空间 (X, 〈·, ·〉)，则对 ∀x ∈ X

||x|| def
= 〈x, x〉

1
2

是 X 上的一个范数，称为内积诱导范数或典则范数
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证明 只验证三角不等式，其余平凡：对 ∀x, y ∈ X，因为

||x+ y||2 = ||x||2 + 2Re 〈x, y〉+ ||y||2

≤ ||x||2 + 2| 〈x, y〉 |+ ||y||2

≤ ||x||2 + 2||x|| · ||y||+ ||y||2 = (||x||+ ||y||)2

□

定义 1.86（Hilbert 空间）如果一个内积空间在其内积诱导的范数下是一个 Banach 空间，则称之为
Hilbert 空间

例 1.87 在 l2 上定义内积如下

〈x, y〉 def
=

∞∑
k=1

xkyk

先前已经验证 l2 是 Hilbert 空间

例 1.88 在 L2 上定义内积如下

〈f, g〉 def
=

ˆ
fgdx

则容易验证 L2 是 Hilbert 空间

定理 1.89 设有内积空间 (X, 〈·, ·〉)，内积诱导范数 ||x|| = 〈x, x〉
1
2，则我们有

(1) 极化恒等式：如果 K = R，则

〈x, y〉 = 1

4
(||x+ y||2 − ||x− y||2)

如果 K = C，则

〈x, y〉 = 1

4

3∑
k=0

ik||x+ iky||2

(2) 平行四边形等式：

||x+ y||2 + ||x− y||2 = 2(||x||2 + ||y||2)

证明 留作习题 □

定理 1.90（Frecher-Von Neumann）设有赋范空间 (X, || · ||)，则

|| · ||可由某个内积给出 ⇐⇒ || · ||满足平行四边形等式

证明 留作习题 □
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定义 1.91（正交、正交补）设有内积空间 (X, 〈·, ·〉)，如果 〈x, y〉 = 0，则称 x 与 y 正交，记为 x ⊥ y；
对 M ⊂ X，如果 x ⊥ y, ∀y ∈M，则记 x ⊥M，定义 M 的正交补为

M⊥ def
= {x ∈ X|x ⊥M}

命题 1.92（勾股定理） x ⊥ y =⇒ ||x+ y||2 = ||x||2 + ||y||2

命题 1.93 若 M
dense
⊂ X,x ⊥M，则 x = 0

证明 对 ∀y ∈ X, ∃yn ∈M,n = 1, 2, · · · , s.t. yn → y，则 0 = 〈x, yn〉 → 〈x, y〉，故 〈x, y〉 = 0, ∀y ∈ X，所
以只能是 x = 0 □

命题 1.94 x ⊥M =⇒ x ⊥ span(M)

命题 1.95 M⊥ 一定是 X 的闭子空间

证明 子空间显然，下证闭性：设 M⊥ 3 xn → x，对 ∀y ∈M, 0 = 〈xn, y〉 → 〈x, y〉，故 〈x, y〉 = 0, x ⊥ y，
所以 x ∈M⊥ □

定理 1.96 设 H 是一个 Hilbert 空间，M ⊂ H 是闭凸集，则对 ∀x ∈ H, ∃ 唯一 y ∈M, s.t. ||x−y|| =
dist (x,M)，即 y 是 M 中距 x 最近的点

证明 存在性：令 d = dist (x,M) = inf
y∈M
||x− y||，则 ∃yn ∈M,n = 1, 2, · · · , s.t. ||x− yn|| → d

ClaimClaimClaim：{yn}∞n=1 收敛

Proof Of Claim :

||ym − yn||2 = ||(ym − x)− (yn − x)||2

(∗)
= 2(||ym − x||2 + ||yn − x||2)− 4

∣∣∣∣∣∣∣∣ym + yn
2

− x
∣∣∣∣∣∣∣∣2

≤ 2(||ym − x||2 + ||yn − x||2)− 4d2 → 4d2 − 4d2 = 0 as m,n→∞

因此 {yn}∞n=1 是基本列，由 H 完备知，∃y ∈ H, s.t. ||yn − y|| → 0，再由 M 是闭集知 y ∈M
ClaimClaimClaim：y 是最近点
Proof Of Claim : 因为

d ≤ ||x− y|| ≤ ||x− yn||+ ||yn − y|| → d

所以 ||x− y|| = d
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唯一性：假设 ∃y′ ∈M, s.t. ||x− y′|| = d，由平行四边形等式

||y − y′||2 = 2(||y − x||2 + ||y′ − x||2)− 4

∣∣∣∣∣∣∣∣y + y′

2
− x
∣∣∣∣∣∣∣∣2

≤ 4d2 − 4d2 = 0

因此 y = y′ □

评价 其中 (∗) 是因为平行四边形等式

||(ym − x)− (yn − x)||2 + ||(ym − x) + (yn − x)||2 = 2(||ym − x||2 + ||yn − x||2)

即
||ym − yn||2 = 2(||ym − x||2 + ||yn − x||2)− ||ym + yn − 2x||2

= 2(||ym − x||2 + ||yn − x||2)− 4

∣∣∣∣∣∣∣∣ym + yn
2

− x
∣∣∣∣∣∣∣∣2

定理 1.97（正交分解）设 H 是 Hilbert 空间，M ⊂ H 是闭子空间，则存在正交分解

H =M ⊕M⊥

即 ∀x ∈ H，存在唯一的 y ∈M, z ∈M⊥, s.t. x = y + z

证明 对 ∀x ∈ H，由定理1.96知，存在唯一的 y ∈M（最近点），使得 ||x− y|| = dist (x,M)
def
= d

ClaimClaimClaim：x− y ∈M⊥

Proof Of Claim : 对 ∀0 6= w ∈M, ∀λ ∈ K，则 y + λw ∈M

d2 ≤ ||x− (y + λw)||2

= ||x− y||2 − 2Re(λ 〈x− y, w〉) + |λ|2||w||2

特别地，取 λ = <x−y,w>
||w||2 ，则

d2 ≤ ||x− y||2 − 2
| 〈x− y, w〉 |2

||w||2
+
| 〈x− y, w〉 |2

||w||4
||w||2 = d2 − | 〈x− y, w〉 |

2

||w||2

因此只能是 〈x− y, w〉 = 0, ∀w ∈M，即 x− y ∈M⊥，由 y 的唯一性知分解唯一 □

定义 1.98（正交投影）设 H 是 Hilbert 空间，M ⊂ H 是闭子空间，映射 PM 定义如下

PM : H −→M

x 7−→ yx（最近点）

称为 H 到 M 的正交投影
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命题 1.99 (1) PMx ∈M,x− PMx ∈M⊥

(2) Range(PM ) =M,Ker(PM ) =M⊥

(3) ||x− PMx|| = dist (x,M)

(4) P 2
M = PM

(5) ||PMx|| ≤ ||x||, ∀x ∈M
(6) Id− PM = PM⊥

定义 1.100（正交系、规范正交系、完备正交系）设有内积空间 (X, 〈·, ·〉)
(1) 如果 S = {eα}α∈I 满足 eα ⊥ eβ, ∀α, β ∈ I, α 6= β，则称 S 是 X 中的正交系；

(2) 如果 S 还满足 ||eα|| = 1, ∀α ∈ I，则称 S 是规范正交系（O.N.S）
(3) 如果一个正交系 S 满足 S⊥ = {0}，则称 S 为完备正交系

定理 1.101 每个非平凡内积空间中都有完备的正交系

为了证明该定理，我们需要回顾一下 Zorn 引理

定义 1.102（偏序集）设 X 6= ∅，如果 X 上的一个关系 ≲ 满足
(1)（传递性）若 x ≲ y 且 y ≲ z，则 x ≲ z

(2)（反身性）x ≲ x

(3) 若 x ≲ y, y ≲ x，则 x = y

则称 ≲ 是 X 上的一个偏序，称 (X,≲) 为偏序集

定义 1.103 (1) 如果 ∀x, y ∈ X,x ≲ y, y ≲ x 二者必取其一，则称 ≲ 为一个全序
(2) 对 Y ⊂ X，如果 ∃p ∈ X, s.t. y ≲ p, ∀y ∈ Y，则称 p 是 Y 的一个上界

(3) 如果 ∃m ∈ X 满足 m ≲ x =⇒ x = m，则称 m 是 X 的一个极大元

公理 1.104（Zorn Lemma）设有偏序集 (X,≲)，如果 X 的每个全序子集都有上界，则 X 一定有极

大元

证明（定理 1.102）令
F def

= {X中的正交系}

考虑集合的包含关系 ⊂，则 (F ,⊂) 是一个偏序集，设 C 是 F 的全序子集，令

P def
=
⋃
A∈C

A

则 P 是 C 的一个上界，由 Zorn Lemma 知，F 有极大元 S

Claim：Claim：Claim：S⊥ = {0}
假设不然，则 ∃0 6= x0 ∈ X, s.t. x0 ⊥ S，所以 S ∪ {x0} ∈ F，这与 S 的极大性矛盾！ □
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定义 1.105（规范正交基）设有内积空间 (X, 〈·, ·〉)，S = {eα}α∈I 是一个规范正交系，如果 ∀x ∈ X
均可表为

x =
∑
α∈I

〈x, eα〉 eα

则称 S 为 X 的一个规范正交基 (O.N.B)，我们称 {〈x, eα〉}α∈I 称为 x 关于 S 的 Fourier 系数

评价 上面的求和只是形式和，未必收敛，接下来我们会证明这样定义是合理的

定理 1.106（Bessel 不等式）设 {eα}α∈I 是一个规范正交系，则对 ∀x ∈ X∑
α∈I

| 〈x, eα〉 |2 ≤ ||x||2

证明 Step 1. 证明任何有限项 {α1, · · · , αN} ⊂ I,
N∑

k=1

| 〈x, eαk
〉 | ≤ ||x||2

因为

0 ≤

〈
x−

N∑
k=1

〈x, eαk
〉 eαk

, x−
N∑
j=1

〈
x, eαj

〉
eαj

〉

=||x||2 −
N∑

k=1

〈x, eαk
〉 〈eαk

, x〉 −
N∑
j=1

〈
x, eαj

〉 〈
x, eαj

〉
+

N∑
k=1

N∑
j=1

〈x, eαk
〉
〈
x, eαj

〉 〈
eαk

, eαj

〉
=||x||2 −

N∑
k=1

| 〈x, eαk
〉 |2 （第三项和第四项消去）

Step 2. 证明 Ĩ = {α ∈ I : 〈x, eα〉 6= 0} 至多可数
令

In
def
= {α ∈ I : | 〈x, eα〉 | >

1

n
}, n = 1, 2, · · ·

ClaimClaimClaim：∀n ∈ N,#In <∞
Proof Of Claim : 假设不然，则存在 n0, s.t. #In0

=∞，取 N 充分大，使得

N

n2
0

> ||x||2

在 In0
中任取 N 个指标 α1, · · · , αn，则

N∑
k=1

| 〈x, eαk
〉 |2 > N

n2
0

> ||x||2

这与 Step 1 矛盾！进而 Ĩ =
∞⋃

n=1

In 可数

Step 3. 任给 Ĩ 的一个排列 Ĩ = {αk}∞k=1，对 ∀N，由 Step 1 我们有

N∑
k=1

| 〈x, eαk
〉 |2 ≤ ||x||2
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因此我们可以定义 ∑
α∈I

| 〈x, eα〉 |
def
=

∞∑
k=1

| 〈x, eαk
〉 |2 ≤ ||x||2

□

评价 在证明 Bessel不等式前，求和
∑
α∈I

| 〈x, eα〉 |2 未必良定，但是我们证明了该求和是收敛的，由 Riemann

重排定理知它是良定的，即与排列方式无关

引理 1.107 设 H 是 Hilbert 空间，S = {eα}∞k=1 是规范正交系，定义

M
def
= Span({ek}∞k=1)

则 ∀x ∈ H，有
∞∑
k=1

〈x, ek〉 ek ∈M，且
∞∑
k=1

〈x, ek〉 ek = PMx

证明 由 Bessel 不等式知 ∑
α∈I

| 〈x, eα〉 |2 ≤ ||x||2

所以由勾股定理知 ∣∣∣∣∣
∣∣∣∣∣

n∑
k=m

〈x, ek〉 ek

∣∣∣∣∣
∣∣∣∣∣
2

=

m∑
k=n

| 〈x, ek〉 |2 → 0, as m,n→∞

这说明

{
n∑

k=1

〈x, ek〉 ek
}∞

k=1

是基本列，我们定义它的极限为

∞∑
k=1

〈x, ek〉 ek
def
= lim

n→∞

n∑
k=1

〈x, ek〉 ek

由 M 是闭集知
∞∑
k=1

〈x, ek〉 ek ∈M

又因为 〈
x−

∞∑
k=1

〈x, ek〉 ek, em

〉
= 〈x, em〉 − 〈x, em〉 = 0, ∀m ∈ N

即 x−
∞∑
k=1

〈x, ek〉 ∈M⊥，所以

x =

(
∞∑
k=1

〈x, ek〉

)
+

(
x−

∞∑
k=1

〈x, ek〉

)

因为 H 有直和分解 H =M ⊕M⊥，由直和分解的唯一性知
∞∑
k=1

〈x, ek〉 = PMx □
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引理 1.108 对 N 的任一置换 σ

∞∑
k=1

〈
x, eσ(k)

〉
eσ(k) =

∞∑
k=1

〈x, ek〉 ek

证明 令

M
def
= Span({ek}∞k=1), M̃

def
= Span({eσ(k)}∞k=1)

则作为集合有 M = M̃，所以 LHS = PM̃x = PMx = RHS □

评价
∑
α∈I

〈x, eα〉 eα
def
=

∞∑
k=1

〈x, ek〉 ek，之前证明过 {〈x, eα〉}α∈I 中只有至多可数个非零，我们任取这些非

零项的一个排列即可

定理 1.109 设 H 是 Hilbert 空间，{eα}α∈I 是一个规范正交系，则对 ∀x ∈ H
(1)

∑
α∈I

〈x, eα〉 eα ∈ H

(2) ∣∣∣∣∣
∣∣∣∣∣x−∑

α∈I

〈x− eα〉 eα

∣∣∣∣∣
∣∣∣∣∣ = ||x||2 −∑

α∈I

| 〈x, eα〉 |2

证明 对 ∀x ∈ H, Ĩ = {α ∈ I| 〈x, eα〉 6= 0} 至多可数，令 Ĩ = {αk}∞k=1，则可以定义

∑
α∈I

〈x, eα〉 eα
def
=

∞∑
k=1

〈x, eαk
〉 eαk

∈ H

由勾股定理知 ∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

〈x, eαk
〉 eαk

∣∣∣∣∣
∣∣∣∣∣
2

= ||x||2 −
n∑

k=1

| 〈x, eαk
〉 |2

令 n→∞ 即得证 □

定理 1.110 设 H 是 Hilbert 空间，S = {eα}α∈I 是规范正交系，则以下等价 TFAE
(1) S 是规范正交基

(2) S⊥ = {0}（完备）
(3) Parseval 等式成立：∀x ∈ H

||x||2 =
∑
α∈I

| 〈x, eα〉 |2

证明 (1) =⇒ (3) 由规范正交基的定义和定理1.109立得
(3) =⇒ (2) 假设 S⊥ 6= {0}，则存在 0 6= x0 ∈ H, s.t. 〈x0, eα〉 = 0, ∀α ∈ I，则∑

α∈I

| 〈x0, eα〉 |2 = 0
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由 Parseval 等式知 ||x0||2 = 0，这与 x0 6= 0 矛盾！

(2) =⇒ (1)假设 S 不是规范正交基，则 ∃x0 ∈ H, s.t.
∑
α∈I

〈x0, eα〉 eα 6= x0 ，即 x0−
∑
α∈I

〈x0, eα〉 eα 6= 0，

另一方面，对 ∀β ∈ I 〈
x0 −

∑
α∈I

〈x0, eα〉 eα, eβ

〉
= 〈x0, eβ〉 − 〈x0, eβ〉 = 0

故 x0 −
∑
α∈I

〈x0, eα〉 eα ∈ S⊥，这与 S⊥ = {0} 矛盾！ □

综上我们有如下定理

定理 1.111 非平凡的 Hilbert 空间都有规范正交基

例 1.112 考虑 l2 以及

en
def
= (0, · · · , 0︸ ︷︷ ︸

(n−1)个

, 1, 0, · · · ), n = 1, 2, · · ·

因为 ({en}∞n=1)
⊥ = {0}，所以 {en}∞n=1 是 l2 的规范正交基

评价 上面的例子中，{en}∞n=1 不是 l2 的 Hamel 基，考虑 (1, 1
2
, 1
3
, · · · ) ∈ l2，但是它不能被有限多个 en

线性表示出

定理 1.113（Gram-Schmidt 正交化）设有内积空间 (X, 〈·, ·〉), {xk}∞k=1 线性无关，则存在规范正交

系 {ek}∞k=1，使得 ∀n ∈ N
Span({ek}nk=1) = Span({xk}nk=1)

证明 构造性证明：令 y1 = x1，归一化得 e1 = y1

||y1||；令 y2 = x2 − 〈x2, e1〉 e1，归一化得 e2 = y2

||y2||；假

设前 k − 1 个 yn, en 已经定义好，接下来定义

yk = xk −
k−1∑
i=1

〈xk, ei〉 ei, ek =
yk
||yk||

□

定理 1.114 设 H 是 Hilbert 空间，则 H 可分 ⇐⇒ H 有至多可数的规范正交基

证明 (=⇒) : Case 1. 若 dimH <∞，对 Hamel 基进行 Gram-Schmidt 正交化即得
Case 2. 若 dimH =∞，由 H 可分知 ∃A = {xk}∞k=1

dense
⊂ H

Claim：Claim：Claim：∃B = {yk}∞k=1 ⊂ A 线性无关，使得 Span(B) = Span(A)
Proof Of Claim : 取 xn1

= x1, xn2
∈ A, s.t. xn2

/∈ Span{xn1
}, · · · , 取 xnk

∈ A, s.t. xnk
/∈ Span{xn1

,

· · · , xnk−1
}，令 yk = xnk

, k = 1, 2, · · · , B = {yk}∞k=1，则由选取知 ∀xk ∈ A, xk ∈ Span{y1, · · · , yk−1}，所
以 A ⊂ Span(B) =⇒ Span(A) = Span(B)，由 A 的稠密性知

Span(A) = Span(B) = H
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且 #B =∞（若 #B <∞，则 Span(B) 是有限维子空间，故 Span(B) = Span(B) = H，这与 dimH =∞
矛盾！）

对 B 进行 Gram-Schmidt 正交化得到规范正交系 {en}∞n=1, s.t. Span({en}∞n=1) = Span(B) = H，故

({en}∞n=1)
⊥ = {0}，所以它是规范正交基

(⇐=) : 设 {en}∞n=1 是 H 的可数规范正交基（有限情形类似），令

M
def
= SpanQ({ek}∞k=1) =

{
n∑

k=1

λkek

∣∣∣∣λk ∈ Q+ iQ, k = 1, 2, · · ·

}

Claim：Claim：Claim：M 可数

Proof Of Claim : 考虑一一对应

ϕ :M −→
⋃

I⊂{ek}∞
k=1

#I<∞

(Q+ iQ)#I

n∑
k=1

λkenk
7−→ (λ1, · · · , λn)

由
⋃

I⊂{ek}∞
k=1

#I<∞

(Q+ iQ)#I 可数知 M 可数

Claim：Claim：Claim：M
dense
⊂ H

Proof Of Claim : 对 ∀x ∈ H, ∀ε > 0，由 x =
∞∑
k=1

〈x, ek〉 ek，对 ∀n, ∃αn ∈ Q+ iQ, s.t. |αn−〈x, en〉 | <
ε

2n+1 ，则对 ∀N ∈ N 有

∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

〈x, ek〉 ek −
N∑

k=1

αkek

∣∣∣∣∣
∣∣∣∣∣
2

=
N∑

k=1

| 〈x, ek〉 − αk|2 <
ε2

4

再取 N 充分大，使得 ∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

〈x, ek〉 ek − x

∣∣∣∣∣
∣∣∣∣∣ < ε

2

因此 ∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

αkek − x

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

αkek −
N∑

k=1

〈x, ek〉 ek

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

〈x, ek〉 ek − x

∣∣∣∣∣
∣∣∣∣∣ < ε

2
+
ε

2
= ε

□

例 1.115（不可分的 Hilbert 空间）设 µ 是 R 上的计数测度，即

µ(E) =

#E, #E <∞

+∞, #E =∞

记 L2(R, µ) =

{
f : R→ R µ-可测，且f在至多可数个点处非零，且

∑
t∈R
|f(t)|2 <∞

}
，则对 f : R →

36



《泛函分析》课堂笔记 § 1.7 内积空间

[0,∞]，我们可以定义和式以及内积

∑
t∈R

f(t) = sup
{∑

t∈F

f(t) : f ⊂ R,#F <∞

}

〈f, g〉 =
∑
t∈R

f(t)g(t)

考虑函数

er(t)
def
=

1, t = r

0, t 6= r

则 {er}r∈R 是 L2(R, µ) 的规范正交基：只需证明 ({er}r∈R)
⊥ = {0}，注意到 〈f, er〉 = f(r)，若 f 和每个

er 都正交，则 ∀r ∈ R, f(r) = 0，故 f ≡ 0；因此它是 H 的不可数的规范正交基，故 H 不可分

接下来我们对可分的内积空间进行分类

定义 1.116（内积空间同构）设有两个内积空间 (X1, 〈·, ·〉1), (X2, 〈·, ·〉2)，如果 ∃ 线性同构 T : X1 →
X2, s.t.

〈Tx, Ty〉2 = 〈x, y〉1

则称 X1, X2 作为内积空间同构，记为 X1 ' X2

定理 1.117 (1) n 维 Hilbert 空间 ' Kn

(2) 无穷维可分 Hilbert 空间 ' l2

证明 只证明 (2)：设 {ek}∞k=1 是 H 的一个规范正交基，定义

T : H −→ l2

x 7−→ {〈x, ek〉}∞k=1

则我们有如下观察

(1) T 线性

(2) T 等距：||Tx||l2 =

(
∞∑
k=1

| 〈x, ek〉 |2
) 1

2 Parseval
= ||x||

(3) T 是单射（由等距可得）

(4) T 是满射：对 ∀a ∈ l2, a = (a1, a2, · · · )，下面找它的原像，因为∣∣∣∣∣
∣∣∣∣∣

m∑
k=n

akek

∣∣∣∣∣
∣∣∣∣∣
2

=
m∑

k=n

|ak|2 → 0, as m,n→∞

因此
n∑

k=1

akek 是基本列，故 ∃x ∈ H, s.t.

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

akek − x

∣∣∣∣∣
∣∣∣∣∣→ 0, as n→∞
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也就是说 x =
∞∑
k=1

akek，且 〈x, ek〉 = ak，因此 Tx = a

(5) 〈Tx, Ty〉l2 = 〈x, y〉 , ∀x, y ∈ H：这是因为

〈x, y〉 =

〈
∞∑
k=1

〈x, ek〉 ek,
∞∑
j=1

〈y, ej〉 ej

〉

=
∞∑
k=1

∞∑
j=1

〈x, ek〉 〈y, ej〉 〈ek, ej〉

=
∞∑
k=1

〈x, ek〉 〈y, ek〉 = 〈Tx, Ty〉l2

□

例 1.118 考虑单位圆周 T def
= {e2πit|t ∈ R}，试求 L2(T) 上的规范正交基（定义内积为 〈f, g〉 =

´
T fg）？

对 T 上的函数 F，令

f(t)
def
= F (e2πit), t ∈ R

则 f 是 R 上周期为 1 的函数，且我们有一一对应

F ←→ f, T←→ [−1

2
,
1

2
)

定义 ek(t) = e2πikt, t ∈ [− 1
2
, 1
2
), k = 0,±1,±2, · · ·，则 {ek}k∈Z 是 L2(T) 中的规范正交系，称为三角函数

系，这是因为 ˆ 1
2

− 1
2

e2πikte2πijtdt =
ˆ t

2

− 1
2

e2πi(k−j)tdt = δij

对 f ∈ L2(T)，令

f̂(k) =

ˆ 1
2

− 1
2

f(t)e−2πiktdt = 〈f, ek〉 , k ∈ Z

实际上 f(x) 有 Fourier 展开 f(x) ∼
∑
k∈Z

f̂(k)e2πikx =
∑
k∈Z
〈f, ek〉 ek

Q：是否每个 f 的 Fourier 级数都收敛于 f？

A：需要考虑以何种形式收敛
(1) 逐点收敛：1876 Du Bois-Reymond 构造了反例；充分条件（Dini 条件）
(2) a.e 收敛？（较难，本科阶段不考虑）
(3) 平方平均收敛平方平均收敛平方平均收敛（依 L2 范数收敛）

定理 1.119 ∀f ∈ L2(T)，我们有

||SNf − f ||2 → 0 as N →∞

这里 (SNf)(t) =
N∑

k=−N

f̂(k)e2πikt 为 Fourier 级数的部分和
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证明 证明思路：
Thm ⇐⇒ {ek}k∈Z是L

2(T)的规范正交基

⇐⇒ ({ek}k∈Z)
⊥ = {0}

⇐⇒ Span({ek}k∈Z) = L2(T)

⇐⇒ {三角多项式}
dense
⊂ L2(T)

首先我们有 SNf = f ∗DN，其中 DN (t) =
N∑

k=−N

e2πikt = sin[(2N+1)πt]
sin πt

（Dini 核）

这是因为

(SNf)(x) =
N∑

k=−N

[ˆ 1
2

− 1
2

f(t)e−2πiktdt
]
e2πikx

=

ˆ 1
2

− 1
2

f(t)

[
N∑

k=−N

e2πik(x−t)

]
dt = (f ∗DN )(x)

但是 ||DN ||1 →∞ as N →∞，即它不是好核，我们考虑 Cesaro 求和

σNf
def
=

1

N + 1

N∑
k=0

Skf =
1

N + 1

N∑
k=0

f ∗Dk

= f ∗ FN

其中 FN (t) = 1
N+1

N∑
k=0

Dk(t) =
1

N+1
sin2[(N+1)πt]

sin2(πt)
为 Fejer 核

Claim1：Claim1：Claim1：
´ 1

2

− 1
2

FN (t)dt = 1，即 ||FN ||1 = 1

Claim2：Claim2：Claim2：∀δ > 0, lim
N→∞

´
δ<|t|< 1

2
FN (t)dt = 0

Proof Of Claim : 断言 1 自行验证，对于断言 2 我们有

0 ≤ FN (t) ≤ 1

N + 1

1

sin2(πδ)
, ∀t with δ < |t| < 1

2

我们还需要一个引理

引理 1.120（Minkowski 积分不等式）设 1 ≤ p <∞∣∣∣∣∣∣∣∣ˆ
Y

f(·, y)dy
∣∣∣∣∣∣∣∣

p

≤
ˆ
Y

||f(·, y)||pdy

即 (ˆ
X

∣∣∣∣ˆ
Y

f(x, y)dy
∣∣∣∣p dx

) 1
p

≤
ˆ
Y

(ˆ
X

|f(x, y)|pdx
) 1

p

dy

接下来我们证明 ∀f ∈ L2(T)，有

||σNf − f ||2 → 0, as N →∞
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对 ∀ε > 0

||σNf − f ||2 =

ˆ 1
2

− 1
2

∣∣∣∣∣
ˆ 1

2

− 1
2

[f(x− t)− f(x)]FN (t)dt
∣∣∣∣∣
2

dx

 1
2

≤
ˆ 1

2

− 1
2

(ˆ 1
2

− 1
2

|f(x− t)− f(x)|2dx
) 1

2

FN (t)dt

=

ˆ 1
2

− 1
2

||f(· − t)− f(·)||2FN (t)dt

=

(ˆ
|t|≤δ

+

ˆ
δ<|t|< 1

2

)
||f(· − t)− f(·)||2FN (t)dt

≤ ε

2
+ 2||f ||2

ˆ
δ<|t|< 1

2

FN (t)dt < ε

2
+
ε

2
= ε

（当 N 充分大时），又因为

σNf =
1

N + 1

N∑
k=0

Skf

即 σNf 为三角多项式，即 {三角多项式}
dense
⊂ L2(T) □
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第二章 线性算子与线性泛函

§ 2.1 线性算子

定义 2.1（线性算子）设 X,Y 是向量空间，如果映射 T : X → Y 满足

T (αx+ βy) = αTx+ βTy, ∀x, y ∈ X, ∀α, β ∈ K

则称 T 是线性算子，若 Y = K，则称 T 是线性泛函

例 2.2 微分算子：设 Ω ⊆ Rn 是开集，X = Y = C∞(Ω)

T =
∑
|α|≤k

aα∂
α

例 2.3 积分算子：设 X = Lp(Ω), Y = {Ω上的可测函数}，定义积分核 K(·, ·) 为 Ω × Ω 上的可测函数

（通常它还具有其它性质），定义

Tu(x) =

ˆ
Ω

K(x, y)u(y)dy, x ∈ Ω

比如 Fourier 变换
Ff(y) =

ˆ
Rn

f(x)e−2πix·ydx

例 2.4 f(u) =
´
Ω
u(x)2dx 为非线性泛函；||u||p 也是非线性泛函

定义 2.5（有界算子）设有赋范空间 (X, || · ||X), (Y, || · ||Y )，设 T : X → Y 是线性算子，如果

∃C > 0, s.t. ||Tx||Y ≤ C||x||X , ∀x ∈ X，则称 T 有界

评价 T 有界 ⇐⇒ T 把有界集映为有界集（留作习题）

定理 2.6 设有赋范空间 (X, || · ||X), (Y, || · ||Y ), T : X → Y 为线性算子，则 T 有界 ⇐⇒ T 连续

证明 (=⇒) : 设 xn → x，即 ||xn − x||X → 0，由定义有

||Txn − Tx||Y = ||T (xn − x)||Y ≤ C||xn − x||X → 0

(⇐=) : 假设 T 无界，则对 ∀n ∈ N, ∃xn ∈ X, s.t. ||Txn||Y > n||x||X，设 x̃n = xn

n||xn||X , ∀n ∈ N，则

||x̃n||X =
1

n
→ 0

由 T 连续知 T x̃n → 0，但另一方面

||T x̃n||Y =
||Txn||Y
n||xn||X

> 1, ∀n ∈ N
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矛盾！ □

定理 2.7 有限维赋范空间之间的线性算子有界

证明 Case 1. X = Kn, Y = Km

设有线性算子 T : X → Y，由 T 线性知 ∃A = (aij)m×n, s.t. Tx = Ax，则

||Tx||Km =

 m∑
i=1

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣
2
 1

2

≤

[
m∑
i=1

(
n∑

j=1

|aij |2
)(

n∑
j=1

|xj |2
)] 1

2

=

(
m∑
i=1

n∑
j=1

|aij |2
) 1

2

||x||Kn

Case 2. 一般情况（dimX = n, dimY = m）

设有线性算子 T : X → Y，因为存在线性同构 ϕ : X → Kn, ψ : Y → Km，考虑 T̃ = ψ ◦ T ◦ ϕ−1 :

Kn → Km，则由 Case 1 知 T̃ 是有界的，进而 T = ψ−1 ◦ T̃ ◦ ϕ 连续，故有界 □

例 2.8（无界算子）设 X = C1[0, 1], Y = C[0, 1]，都赋予一致范数（取上确界），则微分算子 T = d
dt 无

界：构造 un(t) = tn, t ∈ [0, 1], n ∈ N 则

||Tun||
||un||

= n→∞

习题 2.9 证明：
(1) 若 dimX <∞，则线性算子 T : X → Y 有界

(2) 若 dimX =∞, Y 6= {0}，则存在无界线性算子 X → Y

定义 2.10 约定记号 
L (X,Y )

def
= {X到Y的有界线性算子}

L (X)
def
= L (X,X)

X∗ def
= L (X,K) = {X上的连续线性泛函}

定义算子间的加法与数乘

(T + S)(x)
def
= Tx+ Sx, (λT )(x)

def
= λ(Tx)

对 ∀T ∈ L (X,Y )，定义

||T ||X→Y
def
= sup

x∈X
x ̸=0

||Tx||Y
||x||X

= sup
x∈X

||X||=1

||Tx||

称为 T 的算子范数

定理 2.11 (L (X,Y ), || · ||X→Y ) 是赋范空间，进而

(1) 如果 Y 完备，则 L (X,Y ) 完备

(2) X∗ 是 Banach 空间
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证明 只证明 (1)：赋范空间自行验证，设 {Tn}∞n=1 ⊂ L (X,Y ) 是基本列，则对 ∀ε > 0, ∃N ∈ N, s.t.

||Tn − Tm|| < ε, ∀m,n ≥ N

即 ∀x ∈ X, ||Tnx − Tmx|| < ε||x||, ∀m,n ≥ N，所以 {Tnx}∞n=1 是 Y 中的基本列，由 Y 完备知 ∃y ∈
Y, s.t. Tnx→ y，定义映射

T : X −→ Y

x 7−→ y = lim
n→∞

Tnx

由 Tn, ∀n 线性知，T 是线性的，下证 T ∈ L (X,Y )，即 T 有界

||Tnx− Tx|| ≤ ||Tnx− Tmx||+ ||Tmx− Tx||

< ε||x||+ ||Tmx− Tx||
m→∞
≤ ε||x||, ∀n ≥ N

进而 ||Tnx− Tx|| ≤ ε||x||, ∀n ≥ N，所以

||Tx|| ≤ ||TNx||+ ε||x|| ≤ (||TN ||+ ε)||x|| def
= C||x||

所以 T ∈ L (X,Y )，最后证明 ||Tn − T || → 0, as n→∞
由上过程知

||Tn − T || = sup x∈X
x ̸=0

||Tnx− Tx||
||x||

≤ ε, ∀n ≥ N

令 ε→ 0 即证 □

例 2.12 设 H 是 Hilbert空间，M ⊂ H 是闭子空间，回忆 H 到M 的正交投影 PM，我们有 ||PMx|| ≤ ||x||，
进而

||PM || = sup
x∈X
x ̸=0

||PMx||
||x||

= 1

这是因为当 x ∈M 时，PMx = x

接下来介绍 Hilbert 空间中的 Riesz 表示定理
设 H 是 Hilbert 空间，对 ∀y ∈ H，定义

fy(x)
def
= 〈x, y〉 , ∀x ∈ H

则 fy 是线性泛函，且

|fy(x)| = | 〈x, y〉 | ≤ ||x|| · ||y||, ∀x ∈ H

所以 fy ∈ H∗ 且 ||fy|| ≤ ||y||，另一方面

||y||2 = | 〈y, y〉 | = |fy(y)| ≤ ||fy|| · ||y|| =⇒ ||y|| ≤ ||fy||

因此 ||fy|| = ||y||
QQQ：是否 ∀f ∈ H∗, ∃y ∈ H, s.t. f(x) = 〈x, y〉 , ∀x ∈ H？
AAA：是的，这就是 Hilbert 空间中的 Riesz 表示定理
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定理 2.13（Riesz 表示定理）设 H 是 Hilbert 空间，对 ∀f ∈ H∗, ∃ 唯一 yf ∈ H, s.t. f(x) =

〈x, yf 〉 , ∀x ∈ H，且 ||yf || = ||f ||

证明 存在性：如果 f ≡ 0，则取 yf = 0；下面假设 f 6≡ 0，则

Ker(f) = {x ∈ X : f(x) = 0} 6= H

且它是 H 的闭子空间，进而 Ker(f)⊥ 6= {0} 非平凡，则 ∃0 6= y0 ∈ Ker(f)⊥，不妨设 ||y0|| = 1，则对

∀x ∈ H
f

(
x− f(x)

f(y0)
y0

)
= f(x)− f(x)

f(y0)
· f(y0) = 0, ∀x ∈ H

即 x− f(x)
f(y0)

y0 ∈ Ker(f)，又因为 y0 ∈ Ker(f)⊥，所以

〈
x− f(x)

f(y0)
y0, y0

〉
= 0, ∀x ∈ H

即 〈x, y0〉 − f(x)
f(y0)
||y0||2 = 0 =⇒ f(x) =

〈
x, f(y0)y0

〉
，取 yf = f(y0)y0 即可

唯一性：若 ∃y1f , y2f ∈ H, s.t. f(x) =
〈
x, y1f

〉
=
〈
x, y2f

〉
, ∀x ∈ X，则

〈
x, y1f − y2f

〉
= 0, ∀x ∈ H

进而取 x = y1f − y2f 即知 y1f = y2f □

定理 2.14 设 H 是 Hilbert 空间，a(·, ·) 是 H 上的共轭双线性函数，如果 ∃C > 0, s.t.

|a(x, y)| ≤ C||x|| · ||y||, ∀x, y ∈ H

则 ∃A ∈ L (H), s.t. a(x, y) = 〈x,Ay〉 , ∀x, y ∈ H，且

||A|| = sup
x,y∈H
x,y ̸=0

|a(x, y)|
||x|| · ||y||

证明 固定 y ∈ H，定义 fy(x) = a(x, y), ∀x ∈ H，则

|fy(x)| = |a(x, y)| ≤ C||y|| · ||x||

因此 fy ∈ H∗，且 ||fy|| ≤ C||y||，由 Riesz 表示定理，存在唯一 z ∈ H, s.t.

fy(x) = 〈x, z〉 , ∀x ∈ H

且 ||z|| = ||fy||，定义
A : H −→ H

y 7−→ z
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（其中 z 如上定义），则 a(x, y) = fy(x) = 〈x, z〉 = 〈x,Ay〉，且我们有观察
(1) A 线性

(2) ∀y ∈ H, ||Ay|| = ||z|| = ||fy|| ≤ C||y||
因此 A 有界，A ∈ L (H), ||A|| ≤ C，特别地取 C = sup

x,y∈H
x,y ̸=0

|a(x,y)|
||x||·||y||，即

||A|| ≤ sup
x,y∈H
x,y ̸=0

|a(x, y)|
||x|| · ||y||

另一方面有 |a(x, y)| = | 〈x,Ay〉 | ≤ ||x|| · ||Ay|| ≤ ||A|| · ||x|| · ||y||, ∀x, y ∈ H，移项取上确界得

sup
x,y∈H
x,y ̸=0

|a(x, y)|
||x|| · ||y||

≤ ||A||

因此二者相等 □

§ 2.2 纲推理

定义 2.15（疏集）设有度量空间 (X, d), E ⊆ X，如果 E 无内点，则称 E 是疏集或无处稠密集

例 2.16 Q 不是疏集；Cantor 三分集 C 是疏集

定义 2.17（第一纲集、第二纲集）设有度量空间 (X, d)，若一个集合 A 可以表示成可数个疏集的并

集，则称 A 是第一纲集，即

第一纲集
def
= 可数个疏集之并

不是第一纲集的集合称为第二纲集

评价 可数集是第一纲集

定理 2.18（Baire 纲定理,BCT=Baire Category Theorem）完备的度量空间是第二纲集

为证明 Baire 纲定理，我们需要如下引理

引理 2.19（闭集套定理）设 (X, d) 是完备度量空间，一列闭球 {Bk}∞k=1 满足

(1) Bk+1 ⊆ Bk, ∀k ∈ N
(2) diamBk → 0, as k →∞
则 ∃x0 ∈ X, s.t.

∞⋂
k=1

Bk = {x0}

证明 设 Bk = B(xk, rk)，对 ∀n,m ∈ N，不妨设 n > m，则 Bn ⊆ Bm，故 xn ∈ Bm，进而 d(xn, xm) <

rm → 0 as m,n→∞，故球心序列 {xn}∞n=1 是基本列，由 X 完备知，∃x0 ∈ X, s.t. xn → x0，且由 Bm

闭知 x0 ∈ Bm, ∀m，故 x0 ∈
∞⋂

m=1

Bm
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如果还存在 y ∈
∞⋂

m=1

Bm，则

d(x0, y) ≤ d(x0, xn) + d(xn, y) ≤ 2rn → 0

故 d(x0, y) = 0 =⇒ y = x0 □

接下来我们可以证明 Baire 纲定理

证明 反证，假设完备度量空间 X 是第一纲集，则存在一列疏集 {En}∞n=1, s.t.

X =
∞⋃
k=1

En

任取 B(x0, r0) ⊂ X，由 E1 是疏集知，存在 B(x1, r1) ⊂ B(x0, r0)，且 r1 < 1, B(x1, r1)∩E1 = ∅（这样
取是因为 E1 没有内点，即 B(x0, r0) 不完全落在 E1 中，所以 ∃x1 ∈ B(x0, r0)\E1，则 dist (x1, E1) > 0，

取 r1 < min{1, 1
2

dist (x1, E1)}）
同理，由 E2 是疏集知 ∃B(x2, r2) ⊂ B(x1, r1)，且 r2 <

1
2
, B(x2, r2) ∩ E2 = ∅，依次下去我们得到

一列闭球 {B(xn, rn)}，它满足闭球套定理，进而 ∃x ∈ X, s.t.

∞⋂
k=1

B(xk, rk) = {x}

因为 x ∈ B(xk, rk), ∀k，则 x /∈ Ek, ∀k，所以 x /∈
∞⋃
k=1

Ek = X，矛盾！ □

例 2.20 在 l2 中 {en}∞n=1 是规范正交基，但不是 Hamel 基，因为 l2 的 Hamel 基一定不可数（一般地，
无穷维 Banach 空间的 Hamel 基都不可数）

证明 假设存在 l2 的一个可数 Hamel 基 {xn}∞n=1，令 B = {xn}∞n=1, Xk
def
= Span{x1, · · · , xn}，则 Xk 是

闭集，且由 Hamel 基的定义知

l2 =
∞⋃

n=1

Xn

由 l2 是完备的知，它是第二纲集，由 Baire 纲定理知一定 ∃n0, s.t. Xn0
有内点（否则全都没内点则 l2 是

第一纲集，矛盾！），但是 Xn0
没有内点，矛盾！ □

评价 赋范空间的真子空间没有内点

习题 2.21 证明：多项式全体组成的向量空间上赋以任何范数都不是 Banach 空间

纲推理（category argument）

定理 2.22（Banach,1931）集合 {C[0, 1]中处处不可微的函数} 是第二纲集

证明 记 X = C[0, 1], A
def
= {f ∈ C[0, 1] : f处处不可微}，由 X 完备知 X 是第二纲集，要证明 A ⊆ X 是

第二纲集，只需证明 X\A 是第一纲集
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因为 X\A = {f ∈ C[0, 1] : f至少在一点处可微}，记

An =

{
f ∈ C[0, 1] : ∃t ∈

[
0, 1− 1

n

]
, s.t. sup

h∈[− 1
n , 1

n ]

∣∣∣∣f(t+ h)− f(t)
h

∣∣∣∣ ≤ n
}

则 X\A ⊆
∞⋃

n=1

An，且 An ⊆ An+1, ∀n ∈ N。我们只需证明每个 An 都是疏集

1◦ 证明 An, ∀n ∈ N 是闭集：设 {fk} ⊆ An, fk
C[0,1]→ f，则 fk ⇒ f，下证 f ∈ Ak，因为对每个

fk, ∃tk ∈ [0, 1− 1
n
], s.t.

|fk(tk + h)− fk(tk)| ≤ n|h|, ∀h ∈
[
− 1

n
,
1

n

]
故存在 {tk}∞k=1 子列 {tkj

}∞j=1, s.t. tkj
→ t0 ∈ [0, 1− 1

n
]，所以

|f(t0 + h)− f(t0)| = |f(t0 + h)− f(tkj
+ h)|+ |f(tkj

+ h)− fkj
(tkj

+ h)|+ |fkj
(tkj

+ h)− fkj
(tkj

)|

+ |fkj
(tkj

)− f(tkj
)|+ |f(tkj

)− f(t0)|
def
= I1 + · · ·+ I5

由 f 连续知，可取合适的 kj , s.t. I1, I5 < |h|ε
4

由 fkj
⇒ f 知，可取合适的 kj , s.t. I2, I4 ≤ ||f − fkj

|| < |h|ε
4

再由上知 I3 ≤ n|h|，因此
|f(t0 + h)− f(t0)| ≤ (n+ ε)|h|

令 ε→ 0 知 |f(t0 + h)− f(t0)| ≤ n|h|，故 f ∈ An

2◦ 证明 int(An) = A◦
n = ∅，只需证 ∀f ∈ An, ∀ε > 0, B(f, ε)\An 6= ∅

首先，∃p ∈ P [0, 1], s.t. ||f − p|| < ε
2
，记 M

def
= max

t∈[0,1]
|p′(t)|，则

|p(t+ h)− p(t)| ≤M |h|, ∀h ∈
[
− 1

n
,
1

n

]
, t ∈

[
0, 1− 1

n

]
设 g ∈ C[0, 1] 满足
(1) 分段仿射

(2) ||g|| < ε
2

(3) 每段斜率的绝对值 > M + n

则 ||f − (p+ g)|| ≤ ||f − p||+ ||g|| < ε =⇒ p+ g ∈ B(f, ε)，但是 p+ g /∈ An，因为除去有限个不可微的

点外，|(g + p)′(t)| ≥ |g′(t)| − |p′(t)| > (M + n)−M = n 即 A◦
n = ∅ □

§ 2.3 三大定理

定理 2.23（一致有界定理,Uniform Boundedness Principle,UBP）设 X 是 Banach 空间，Y 是赋范
空间，F ⊂ L (X,Y ) 满足

∀x ∈ X, sup
T∈F
||Tx|| <∞

则 sup
T∈F
||T || <∞，即逐点有界可推一致有界

等价地我们有

sup
T∈F
||T || =∞ =⇒ ∃x0 ∈ X, s.t. sup

T∈F
||Tx0|| =∞
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故我们又称一致有界定理为共鸣定理

证明 对 ∀n ∈ N，令

Fn
def
= {x ∈ X : sup

T∈F
||Tx|| ≤ n} =

⋂
T∈F

{x ∈ X : ||Tx|| ≤ n}

由 T 连续知 {x ∈ X : ||Tx|| ≤ n} 是闭集，故 Fn 也为闭集；因为 ∀x ∈ X, sup
T∈F
||Tx|| <∞，所以

X =
∞⋃

n=1

Fn

另一方面，由 Baire 纲定理知，∃n0, s.t. Fn0
有内点，所以 ∃B(x0, r) ⊆ Fn0

，故

||T (x0 + rx)|| ≤ n0, ∀x ∈ B(0, 1), ∀T ∈ F

由三角不等式知 ||T (rx)|| ≤ n0 + ||Tx0|| ≤ 2n0，即 ||Tx|| ≤ 2n0

r
, ∀x ∈ B(0, 1), ∀T ∈ F，再对 T ∈ F 取

上确界得

sup
T∈F

sup
x∈B(0,1)

||Tx|| = sup
T∈F
||T || ≤ 2n0

r

（作业中证明过 ||T || = sup
x∈B(0,1)

||Tx||） □

定理 2.24（Banach-Steinhaus）设 X 是 Banach 空间，Y 是赋范空间，T, Tn ∈ L (X,Y ), ∀n ∈
N,M

dense
⊂ X，则

Tnx→ Tx, ∀x ∈ X ⇐⇒


sup
n
||Tn|| <∞

Tnx→ Tx, ∀x ∈M

证明 (=⇒) : 由 {Tnx}∞n=1 逐点收敛知逐点有界，进而由共鸣定理知它们一致有界

(⇐=) : 令 C
def
= sup

n
||Tn||，由 M

dense
⊂ X 知 ∀x ∈ X, ∀ε > 0, ∃y ∈M, s.t.

||x− y|| < ε

4(||T ||+ C)

因此
||Tnx− Tx|| ≤ ||Tnx− Tny||+ ||Tny − Ty||+ ||Ty − Tx||

≤ C||x− y||+ ε

2
+ ||T || · ||x− y|| < ε

4
+
ε

2
+
ε

4
= ε

□

定理 2.25 设 X,Y 是 Banach 空间，Tn ∈ L (X,Y ), ∀n ∈ N，如果 ∀x ∈ X, lim
n→∞

Tnx 存在，定义

T : X −→ Y

x 7−→ lim
n→∞

Tnx
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则 T ∈ L (X,Y )，且 ||T || ≤ lim inf
n→∞

||Tn||

习题 2.26 课后习题 2.3.7-2.3.9

定理 2.27（Du Bois-Reymond,1876）记

Snf(x) =
n∑

k=−n

f̂(k)e2πikx

则 ∃f ∈ C(T), s.t. {Snf(0)}∞n=1 发散

证明 因为 Snf(x) 有卷积形式

Snf(x) = (f ∗Dn)(x) =

ˆ 1
2

− 1
2

f(t)Dn(x− t)dt, Dn(t) =
n∑

k=−n

e2πikt =
sin(2n+ 1)πt

sin(πt)

我们定义
Tn : C(T) −→ R

f 7−→ Snf(0)

（Dn 是实值函数，若 f 是实值函数，则 Snf 也是实值函数），因为

|Tnf | =

∣∣∣∣∣
ˆ 1

2

− 1
2

f(t)Dn(t)dt
∣∣∣∣∣ ≤ ||Dn||1||f ||

所以 ||Tn|| ≤ ||Dn||1，且 Tn ∈ C(T)∗

Claim：Claim：Claim：||Tn|| = ||Dn||1
Proof Of Claim : 由定义 Dn 在 [− 1

2
, 1
2
) 中只有有限个零点，故 sgn(Dn) 在 [− 1

2
, 1
2
) 中只有有限个

间断点，故 ∀ε > 0, ∃fξ ∈ C(T), s.t.
(1) fξ 分段仿射

(2) ||fξ|| = 1

(3) fξ = sgn(Dn)，在 [− 1
2
, 1
2
]\Iξ 上，且 |Iξ| < ε

4n+3

所以

|Tnfξ| =

∣∣∣∣∣
ˆ 1

2

− 1
2

fξ(t)Dn(t)dt
∣∣∣∣∣ ≥
ˆ
[− 1

2 ,
1
2 )\Iξ

|Dn(t)|dt−
ˆ
Iξ

|Dn(t)|dt

≥ ||Dn||1 − 2

ˆ
Iξ

|Dn(t)|dt > ||Dn||1 − ε

最后一步放缩是因为 ||Dn||∞ ≤ 2n+ 1，因此

||Tn|| ≥
|Tnfξ|
||fξ||

> ||Dn||1 − ε
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令 ε→ 0 即得 ||Tn|| ≥ ||Dn||1，而

||Dn||1 = 2

ˆ 1
2

0

∣∣∣∣sin(2n+ 1)πt

sin(πt)

∣∣∣∣ dt ≥ 2

ˆ 1
2

0

∣∣∣∣sin[(2n+ 1)πt]

πt

∣∣∣∣ dt
x=(2n+1)πt
=========

2

π

ˆ π
2 (2n+1)

0

∣∣∣∣sinxx
∣∣∣∣ dx→ +∞ as n→∞

因此 sup
n→∞

||Tn|| = +∞，由共鸣定理知 ∃f ∈ C(T), s.t. sup
n
|Tnf | = +∞，因此

lim sup
n→∞

|Snf(0)| = +∞

故 {Snf(0)}∞n=1 发散 □

Q：Q：Q：方程 Tx = y，若 y 变化很小时，对应的解 x 变化是否很小？（或者说如果 T−1 存在，T−1 的连

续性如何）

定理 2.28（开映射定理,OMT）设 X,Y 是 Banach 空间，若 T ∈ L (X,Y ), T 是满射，则 T 是开映

射，即 T 把开集映为开集

我们需要一个引理

引理 2.29 设 X,Y 是 Banach 空间，T ∈ L (X,Y )，若 T 是满射，则 ∃δ > 0, s.t. δBY ⊆ T (BX)，

其中 BX , BY 分别为 X,Y 中的单位球

证明 Step 1. 证明 ∃r > 0, s.t. rBY ⊆ T (BX)

因为 X =
∞⋃

n=1

nBX，由 T 是满射知

Y = T (X) =
∞⋃

n=1

T (nBX) =
∞⋃

n=1

T (nBX)

由 BCT 知 ∃n0, s.t. T (n0BX) 有内点，即 ∃BY (y0, t) ⊆ T (n0BX)，令 r = t
n0

Claim：Claim：Claim：rBY ⊆ T (BX)

Proof Of Claim :对 ∀z ∈ rBY，y0+n0z, y0−n0z ∈ BY (y0, t) ⊆ T (n0BX)，所以 ∃{xk}∞k=1, {x′k}∞k=1 ⊆
n0BX , s.t.

Txk → y0 + n0z, Txk′ → y0 − n0z

因此

T

(
xk − xk′

2n0

)
→ z

由于 xk−xk′
2n0

∈ BX，所以 z ∈ T (BX)

Step 2. 令 δ = r
3
，下证：δBY ⊂ T (BX)，即证明 ∀y ∈ δBY , ∃x ∈ BX , s.t. Tx = y

对 ∀y ∈ δBY，由第一步知 3y ∈ rBY ⊂ T (BX)，因此 ∃x̃1 ∈ BX , s.t. ||3y − T x̃1|| < δ，令 x1
def
=

1
3
x̃1 ∈ 1

3
BX，则 ||y − Tx1|| < δ

3
，令 y1 = y − Tx1，则 y1 ∈ δ

3
BY =⇒ 9y1 ∈ rBY ⊂ T (BX)，同

上知 ∃x2 ∈ 1
32
BX , s.t. ||y1 − Tx2|| < δ

32
，归纳构造 xk, yk，它们满足 yk = yk−1 − Txk ∈ δ

3k
BY，且
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∃xk+1 ∈ 1
3k+1BX , s.t. ||yk − Txk+1|| < δ

3k+1，所以∣∣∣∣∣
∣∣∣∣∣

n+p∑
k=n+1

xk

∣∣∣∣∣
∣∣∣∣∣ < 1

3n+1

1− 1
3

<
1

2 · 3n
, ∀p ∈ N

因此

{
n∑

k=1

xk

}∞

n=1

是基本列，由 X 完备知 ∃x ∈ X, s.t.
n∑

k=1

xk → x，且当 n 足够大时

||x|| ≤

∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

xk

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

xk

∣∣∣∣∣
∣∣∣∣∣ < 1

故 x ∈ BX，此时

δ

3n
> ||yn|| = ||yn−1 − Txn|| = · · · = ||y − T (x1 + · · ·+ xn)||

即 T

(
n∑

k=1

xk

)
→ y，另一方面 T

(
n∑

k=1

xk

)
→ Tx，所以 Tx = y □

接下来可以证明开映射定理

证明 设 U ⊆ X 是开集，下证明 T (U) 是 Y 的开集，对 ∀y ∈ T (U), ∃x ∈ U, s.t. Tx = y，令 V
def
= U − x

是开集，则 0X ∈ V 是 V 的内点，故 ∃t > 0, s.t. tBX ⊆ V，由引理知 ∃δ > 0, s.t. δBY ⊂ T (BX) ⊂ 1
t
T (V )，

进而 0Y 是 T (V ) 的内点，故 y = Tx 是 T (V ) + Tx = T (U) 的内点 □

定理 2.30（逆算子定理,Inverse mapping theorem,IMT）设 (X,Y ) 为 Banach 空间，若 T ∈
L (X,Y ), T 是双射，则 T−1 ∈ L (Y,X)

证明 T−1 连续 ⇐⇒ ∀U ⊆ X 是开集，它的原像 (T−1)−1(U) = T (U) ⊆ Y 是开集，由 T 满射以及开映

射定理知 T 是开映射，则 T−1 连续 □

定理 2.31（Lax-Milgram）设 H 是 Hilbert 空间，如果共轭双线性函数 a(·, ·) : H ×H → K 满足
(1) 连续：∃C > 0, s.t. |a(x, y)| ≤ C||x|| · ||y||, ∀x, y ∈ H
(2) 强制 (coersive)：∃δ > 0, s.t. δ||x||2 ≤ a(x, x), ∀x ∈ H
则存在唯一的 A ∈ L (H), s.t.
(1) a(x, y) = 〈x,Ay〉
(2) A−1 ∈ L (H)，且 ||A−1|| ≤ 1

δ

证明 A 的存在性由定理2.14保证
Step 1.A 是单射
设 Ay = 0，则 a(x, y) = 〈x,Ay〉 = 0, ∀x ∈ H，取 x = y，则 0 = a(y, y) ≥ δ||y||2 ≥ 0，故 y = 0，则

Ker(A) = 0，A 单射

Step 2.A 是满射
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先证明 Range(A) ⊂ H 是闭集，设 {Axn} ⊂ Range(A)，且 Axn → y，则

δ||xn − xm||2 ≤ a(xn − xm, xn − xm) = 〈xn − xm, Axn −Axm〉

≤ ||xn − xm|| · ||Axn −Axm||

进而 ||xn − xm|| ≤ 1
δ
||Axn − Axm|| → 0，故 {xn} 是 H 中的 Cauchy 列，∃x ∈ H, s.t. xn → x，由

A ∈ L (H) 知 Axn → Ax，故 y = Ax ∈ Range(A)
其次证明 Range(A) = H，由 Range(A) 是闭集知，H 有直和分解 H = Range(A)⊕Range(A)⊥，故

只需证明 Range(A)⊥ = {0}，设 〈y,Ax〉 = 0, ∀x ∈ H，则 a(y, x) = 0, ∀x ∈ H，故 0 = a(y, y) ≥ δ||y||2，
则 y = 0，从而 Range(A)⊥ = {0}
综上 A 是双射，由逆算子定理知 A−1 ∈ L (H)，又因为

δ||x||2 ≤ a(x, x) = 〈x,Ax〉 ≤ ||x|| · ||Ax||

故 ||x|| ≤ 1
δ
||Ax||, ∀x ∈ H，由 A 是双射知 ||A−1y|| ≤ 1

δ
||y||, ∀y ∈ H，故 ||A−1|| ≤ 1

δ
□

定理 2.32（范数等价定理）设 (X, ||·||1), (X, ||·||2)都是 Banach空间，若 ||·||2 ≲ ||·||1，则 ||·||1 ' ||·||2

证明 由条件知 ∃C > 0, s.t. ||x||2 ≤ C||x||1, ∀x ∈ X，这说明

Id : (X, || · ||1) −→ (X, || · ||2)

x 7−→ x

是有界算子，即 Id ∈ L ((X, || · ||1), (X, || · ||2))，由逆算子定理知 Id−1 ∈ L ((X, || · ||2), (X, || · ||1))，故
∃C ′ > 0, s.t. ||x||1 ≤ C ′||x||2, ∀x ∈ X，所以

1

C ′ ||x||1 ≤ ||x||2 ≤ C||x||1, ∀x ∈ X

故两个范数等价 □

定义 2.33（乘积空间）设有赋范线性空间 (X, || · ||X), (Y, || · ||Y )，定义

X × Y = {(x, y) : x ∈ X, y ∈ Y }, ||(x, y)|| def
= ||x||X + ||y||Y

称 (X × Y, || · ||X×Y ) 为乘积空间，不难看出 X,Y 完备 =⇒ X × Y 完备

定义 2.34（图像）设 T : X → Y 是线性算子，称

Gr(T ) def
= {(x, Tx) : x ∈ Dom(T )}

为 T 的图像，如果 Gr(T ) 是 X × Y 的闭子空间，则称 T 是闭算子

评价 Dom(T ) 表示 T 的定义域
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命题 2.35 T 是闭算子当且仅当若 Dom(T ) 3 xk → x, Txk → y，则 x ∈ Dom(T ), y = Tx

评价 Dom(T ) 不一定是闭的

例 2.36（无界闭算子） T = d
dt : C[0, 1]→ C[0, 1]，其中 Dom(T ) = C1[0, 1]，则显然 T 是无界线性算子，

下面验证闭性，设 C1[0, 1] 3 uk → u, Tuk → v，则

uk(t)− uk(0) =
ˆ t

0

u′k(s)ds

两边同时令 k →∞ 即可得到

u(t)− u(0) =
ˆ t

0

v(s)ds

所以 u ∈ C1[0, 1], u′ = v □

命题 2.37 若 T 有界，Dom(T ) 闭，则 T 是闭算子

证明 见作业题 2.3.4(1) □

定理 2.38（Bounded Linear Transformation,BLT）设 X 是赋范空间，Y 是 Banach 空间，T ∈
L (Dom(T ), Y )，则存在唯一的 T̃ ∈ L (Dom(T ), Y ), s.t. T̃ |Dom(T ) = T，且 ||T̃ || = ||T ||（保范），即
T 总可以延拓为定义在其闭包上的线性算子

证明 对 ∀x ∈ Dom(T ), ∃{xn}∞n=1 ⊂ Dom(T ), s.t. xn → x，由 T ∈ L (Dom(T ), Y ) 知

||Txn − Txm|| ≤ ||T || · ||xn − xm|| → 0, as m,n→∞

则 {Txn}∞n=1 是 Y 中的基本列，由 Y 完备知 ∃y ∈ Y, s.t. Txn → y，因此可以定义映射

T̃ : Dom(T ) −→ Y

x 7−→ y = lim
n→∞

Txn

容易验证 T̃ 是良定且线性的。对 ∀x ∈ Dom(T )

||T̃ x|| = ||y|| = lim
n→∞

||Txn|| ≤ lim
n→∞

||T || · ||xn|| = ||T || · ||x||

则 T̃ ∈ L (Dom(T ), Y )，且 ||T̃ || ≤ ||T ||，另一方面，

||T̃ || = sup
x∈Dom(T )

x ̸=0

||T̃ x||
||x||

≥ sup
x∈Dom(T )

x ̸=0

||Tx||
||x||

= ||T ||

因此 ||T̃ || = ||T || □

评价 要证明是保范延拓，我们只需证明延拓后范数不增加即可，因为另一边不等式平凡
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推论 2.39 稠密有界的线性算子可唯一、保范数地延拓到全空间（要求像空间完备）

推论 2.40 {有界线性算子} ⊆ {闭线性算子}

例 2.41 考虑 Fourier 变换

(Ff)(ξ) =
ˆ
Rn

f(x)e−2πix·ξdx, f ∈ L1(Rn)

QQQ：如何定义 L2 上函数的 Fourier 变换？
因为（Plancherel，先承认它）L1 ∩ L2

dense
⊂ L2

||Ff ||2 = ||f ||2, ∀f ∈ L1 ∩ L2

由 BLT 知，F 可唯一、保范数地延拓到 L2 上，也定义为 Fourier 变换

定理 2.42（闭图像定理,Closed Graph Theorem,CGT）设 X,Y 是 Banach 空间，T : X → Y 是闭

线性算子，若 Dom(T ) 是闭集，则 T ∈ L (X,Y )

证明 因为 Gr(T ) 是 X × Y 的闭子空间，则 (Gr(T ), || · ||X×Y ) 也是 Banach 空间，定义

π1 : Gr(T ) −→ Dom(T )

(x, Tx) 7−→ x

π2 : Gr(T ) −→ Y

(x, Tx) 7−→ Tx

则 π2 显然有界

Gr(T )

Dom(T ) Y

π1 π2

T

由 π1 是双射及逆算子定理（Dom(T ) 闭 =⇒ 完备）知，π−1
1 有界，进而 T = π2 ◦ π−1

1 有界 □

习题 2.43 用等价范数定理证明 CGT

例 2.44（Hellimger-Toeplity）设 H 是 Hilbert 空间，如果 T : H → H 自伴，即

〈Tx, y〉 = 〈x, Ty〉 , ∀x, y ∈ H

则 T ∈ L (H)

证明 只需证明 T 是闭算子，然后由闭图像定理即证，设 xn → x, Txn → y，则 ∀z ∈ H

〈z, Tx〉 = 〈Tz, x〉 = lim
n→∞

〈Tz, xn〉

= lim
n→∞

〈z, Txn〉 = 〈z, y〉
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因此 〈z, Tx− y〉 = 0, ∀z ∈ H，故 Tx = y，故 T 是闭算子 □

定义 2.45（次线性泛函、半范数）设 X 是 K 上的向量空间，如果函数 p : X → R 满足
(1) 正齐次性：p(tx) = tp(x), ∀x ∈ X, ∀t ≥ 0

(2) 次可加性：p(x+ y) ≤ p(x) + p(y), ∀x, y ∈ X
则称 p 是 X 上的次线性泛函 (Sublinear Functional)，如果 p 还满足齐次性，即

p(λx) = |λ|p(x), ∀x ∈ X, ∀λ ∈ K

则称 p 是 X 上的半范数

评价 (1) 次线性泛函是凸函数

p(αx+ (1− α)y) ≤ p(αx) + p((1− α)y) = αp(x) + (1− α)p(y)

(2) 半范数非负：∀x ∈ X, 2p(x) = p(x) + p(−x) ≥ p(0) = 0

(3) 如果半范数 p 还满足 p(x) = 0 =⇒ x = 0，则 p 是范数

定理 2.46（HBT over R）设 X 是实向量空间，p 是 X 上的次线性泛函，M ⊂ X 是子空间，f 是
M 上的线性泛函且满足 f(x) ≤ p(x), ∀x ∈M，则 ∃X 上的实线性泛函 F, s.t.
(1) 延拓：F |M = f

(2) 受控：F (x) ≤ p(x), ∀x ∈ X

我们需要一个引理

引理 2.47 条件同上，设 x0 ∈ X\M，定义 M̃ =M ⊕ Span{x0}，则 ∃f̃ : M̃ → R, s.t.
(1) 延拓：f̃ |M = f

(2) 受控：f̃(x) ≤ p(x), ∀x ∈ M̃

证明 对 ∀x, y ∈M，因为

f(x) + f(y) = f(x+ y) ≤ p(x+ y) ≤ p(x− x0) + p(y + x0)

即

f(x)− p(x− x0) ≤ p(y + x0)− f(y), ∀x, y ∈M

对 LHS 取上确界，RHS 取下确界得 sup
x∈M

[f(x)− p(x−x0)] ≤ inf
y∈M

[p(y+x0)− f(y)] ，所以 ∃β ∈ R, s.t.

f(x)− p(x− x0) ≤ β ≤ p(y + x0)− f(y), ∀x, y ∈M · · · · · · · · · (∗)

定义
f̃ : M̃ −→ R

x+ λx0 7−→ f(x) + λβ
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则 f̃ 线性，且 f̃ |M = f

Claim：Claim：Claim：f̃(x+ λx0) ≤ p(x+ λx0), ∀x ∈M, ∀λ ∈ R
Proof Of Claim : 若 λ = 0，则平凡；若 λ > 0，取 x = y = x

λ
代入 (∗) 中得

f(
x

λ
)− p(x

λ
− x0) ≤ β ≤ p(

x

λ
+ x0) + f(

x

λ
)

由正齐次性即

f(x)− p(x− λx0) ≤ λβ ≤ p(x+ λx0)− f(x)

因此 f̃(x− λx0) = f(x)− λβ ≤ p(x− λx0)

f̃(x+ λx0) = f(x) + λβ ≤ p(x+ λx0)

若 λ < 0，则在 (∗) 中取 x = y = −x
λ
，同理也有 f̃(x+ λx0) ≤ p(x+ λx0), ∀λ ∈ R □

接下来可以证明定理2.46

证明 约定术语：对两个线性泛函 g, h，如果

(1) Dom(g) ⊆ Dom(h)

(2) h|Dom(g) = g

则称 h 是 g 的延拓，定义

F = {g : g是f的延拓, g(x) ≤ p(x), ∀x ∈ Dom(g)}

在 F 上定义偏序
g ≲ h ⇐⇒ h是g的延拓

设 C 是 F 的任一全序子集，令 Y =
⋃

g∈C

Dom(g)，则 Y 是 X 的子空间，定义

G : Y −→ R

x 7−→ g(x), 若x ∈ Dom(g)

由 C 全序知 G 良定且是 C 的上界，由 Zorn 引理知，F 有极大元 F

Claim：Claim：Claim：Dom(F ) = X

Proof Of Claim : 假设不然，则 ∃x0 ∈ X\Dom(F )，由引理2.47知，∃Dom(F )⊕ Span{x0} 上的线性
泛函 F̃ , s.t. F̃ |Dom(F ) = F，故 F̃ (x) ≤ p(x), ∀x ∈ Dom(F )⊕ Span{x0}，故 F̃ ∈ F 且 F ≲ F̃，与 F 的

极大性矛盾！ □

定理 2.48（HBT over C）设 X 是复向量空间，p 是 X 上的半范数半范数半范数，M ⊂ X 是子空间，f :M → C
是 M 上的复线性泛函且满足 |f(x)| ≤ p(x), ∀x ∈M，则 ∃X 上的复线性泛函 F, s.t.
(1) F |M = f

(2) |F (x)| ≤ p(x), ∀x ∈ X
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证明 Step 1. 先把 X 看作实向量空间（把数乘的数域从复数域换回实数域），令 g
def
= Ref，则 g 是 M

上的实线性泛函，且

g(x) ≤ |f(x)| ≤ p(x), ∀x ∈M

由实 HBT 知，∃G : X → R 实线性，使得 G|M = g,G(x) ≤ p(x), ∀x ∈ X
Step 2. 复化：令 F (x)

def
= G(x)− iG(ix)，则容易验证F (x+ y) = F (x) + F (y), ∀x, y ∈ X

F (αx) = αF (x), ∀x ∈ X, ∀α ∈ R

则

F ((α+ iβ)x) = F (αx) + F (iβx) = αF (x) + βF (ix)

下面证明 F (ix) = iF (x), ∀x ∈ X，这是因为

F (ix) = G(ix)− iG(i · ix) = G(ix)− iG(−x)

= G(ix) + iG(x) = i[G(x)− iG(ix)] = iF (x)

则 F ((α+ iβ)x) = (α+ iβ)F (x)，即 F 满足复线性

Step 3. 证明 F |M = f：对 ∀x ∈M

F (x) = G(x)− iG(ix) = g(x)− ig(ix)

= Ref(x)− iRef(ix) = Re(f(x))− iRe(if(x))

= Ref(x) + iImf(x) = f(x)

Step 4. 证明 |F (x)| ≤ p(x), ∀x ∈ X
对 ∀x ∈ X，如果 F (x) = 0，则平凡，下面设 F (x) 6= 0，则 ∃θ ∈ R, s.t. |F (x)| = e−iθF (x)（取

θ = argF (x) 即可），因此

|F (x)| = F (e−iθx) = G(e−iθx)− iG(ie−iθx) ≤ p(e−iθx) = p(x)

上面不等式中，iG(ie−iθx) = 0，因为 |F (x)| ∈ R，它的虚部为零 □

定理 2.49（HBT, 最常用的形式）设 X 是赋范空间，M ⊆ X 是子空间，则 ∀f ∈M∗, ∃F ∈ X∗, s.t.F |M = f

||F || = ||f ||

即 F 是 f 的保范延拓

证明 定义 p(x)
def
= ||f || · ||x||, ∀x ∈ X，则 p 是 X 上的半范数，且

|f(x)| ≤ ||f || · ||x|| = p(x), ∀x ∈M
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由复 HBT 知，∃X 上的线性泛函 F, s.t. F |M = f, |F (x)| ≤ p(x), ∀x ∈ X，即 |F (x)| ≤ ||f || · ||x||, ∀x ∈ X，
所以 F ∈ X∗ 且 ||F || ≤ ||f ||，另一方面平凡地有 ||f || ≤ ||F || □

评价 HBT 中的延拓不唯一，考虑 (R2, || · ||1), ||(x1, x2)||1 = |x1|+ |x2|，设 M = R× {0}，定义

f :M −→ R

(x, 0) 7−→ x

则 f ∈M∗ 且 ||f || = 1，对 t ∈ (−1, 1) 定义

Ft : R2 −→ R

(x1, x2) 7−→ x1 + tx2

则 Ft|M = f，且

|Ft(x1, x2)| = |x1 + tx2| ≤ |x1|+ |tx2| ≤ ||(x1, x2)||1

因此 ||Ft|| ≤ 1 = ||f ||，由延拓知 ||Ft|| = ||f ||，故延拓并不唯一

推论 2.50 对 ∀x0 ∈ X, ∃f ∈ X∗ 且 ||f || = 1, s.t. f(x0) = ||x0||，我们称 f 为在 x0 处达到 x0 范数

的泛函

证明 令 M
def
= Span{x0}，定义

f0 :M −→ K

λx0 7−→ λ||x0||

则对 ∀x = λx0 ∈ M, |f0(x)| = |λ| · ||x0|| = ||x||，所以 f0 ∈ M∗ 且 ||f0|| = 1，由 HBT 知，存在
f ∈ X∗, ||f || = ||f0|| = 1, s.t. f |M = f0，即 f(x0) = f0(x0) = ||x0|| □

推论 2.51 X 6= {0} =⇒ X∗ 6= {0}

证明 ∃0 6= x0 ∈ X，由推论2.50知 ∃f ∈ X∗ 且 ||f || = 1, s.t. f(x0) = ||x0|| 6= 0 □

推论 2.52 设 x 6= y ∈ X，则 ∃f ∈ X∗, s.t. f(x) 6= f(y)；特别地若 ∀f ∈ X∗, f(x) = f(y)，则 x = y

证明 对 x0 = x− y 应用推论2.50即可 □

以下是推论2.52的一个应用

例 2.53 设 X 是 Banach 空间，如果 {xk}∞k=1 ⊂ X, s.t.
∞∑
k=1

||xk|| < ∞（此时我们称
∞∑
k=1

xk 绝对收敛），

则对级数的任意重排，即 ∀σ : N→ N 双射，有

∞∑
k=1

xσ(k) =
∞∑
k=1

xk
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证明 对 ∀f ∈ X∗，因为
∞∑
k=1

|f(xk)| ≤ ||f ||
∞∑
k=1

||xk|| <∞

所以
∞∑
k=1

f(xk) 是绝对收敛的数项级数，故重排不改变取值，所以
∞∑
k=1

f(xσ(k)) =
∞∑
k=1

f(xk) ，由 f 连续知

f

(
∞∑
k=1

xσ(k)

)
= f

(
∞∑
k=1

xk

)
, ∀f ∈ X∗

由推论2.52知
∞∑
k=1

xσ(k) =
∞∑
k=1

xk □

推论 2.54 对 ∀x ∈ X
||x|| = sup

f∈X∗

||f ||=1

|f(x)|

证明 对 ∀f ∈ X∗ 满足 ||f || = 1，我们有

|f(x)| ≤ ||f || · ||x|| = ||x|| =⇒ sup
f∈X∗

||f ||=1

|f(x)| ≤ ||x||

另一方面，由推论2.50知这个上界可以取到！ □

定理 2.55 设 X 是赋范空间，M 是 X 的子空间，如果 ∃x0 ∈ X\M, s.t. d = dist (x0,M) > 0，则

∃f ∈ X∗, ||f || = 1, s.t. f(M) = {0} 且 f(x0) = d

证明 令 M̃ =M ⊕ Span{x0}，定义
f0 : M̃ −→ K

x = y + λx0 7−→ λd

则 f0(M) = {0}, f0(x0) = d，对 ∀x = y + λx0 with y ∈ M,λ ∈ K，如果 λ = 0，则 f0(x) = 0；如果

λ 6= 0，则

|f0(x)| = |λ|dist (x0,M) ≤ |λ| · ||x0 +
y

λ
||

= ||y + λx0|| = ||x||

因此 f0 ∈ M̃∗，且 ||f0|| ≤ 1，由 HBT 知，∃f ∈ X∗, s.t.f |M̃ = f0 =⇒ f(M) = {0}, f(x0) = d

||f || = ||f0|| =⇒ ||f || ≤ 1

接下来证明 ||f || ≥ 1，因为 d = inf
y∈M
||x0 − y||，则 ∀n ∈ N∗, ∃yn ∈M, s.t. ||x0 − yn|| < d + 1

n
，故

|f(x0 − yn)|
||x0 − yn||

=
|f(x0)|
||x0 − yn||

>
d

d + 1
n

→ 1, as n→∞
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故 sup
n

|f(x0−yn)|
||x0−yn|| ≥ 1，即 ||f || ≥ 1 □

定理 2.56 设 X 是赋范线性空间，M ⊆ X, 0 6= x0 ∈ X，则

x0 ∈ Span(M) ⇐⇒ ∀f ∈ X∗ with f(M) = 0都有f(x0) = 0

证明 (=⇒) :对 ∀f ∈ X∗ with f(M) = {0}，由线性性知 f(Span(M)) = 0，再由连续性知 f(Span(M)) = 0，

所以 f(x0) = 0

(⇐=) : 假设 x0 /∈ Span(M)，则 d = dist (x0, Span(M)) > 0，所以 ∃f ∈ X∗, s.t. f(Span(M)) = 0，

而 f(x0) = d > 0，矛盾！ □

接下来介绍几何形式的 Hahn-Banach 定理，即凸集分离定理（或超平面分离定理）

定义 2.57（凸、对称、吸收）设 X 是向量空间，C ⊆ X
(1) 如果 ∀x, y ∈ C, ∀t ∈ [0, 1]，有 tx+ (1− t)y ∈ C，则称 C 是凸集

(2) 如果 −C = C，则称 C 是对称的

(3) 如果 ∀x ∈ X, ∃t > 0, s.t. x
t
∈ C，则称 C 是吸收的

Fact 任一族凸集之交仍为凸集

定义 2.58（凸包）对 ∀A ⊆ X，定义 A 是凸包为

Conv(A) =
⋂
C⊇A
C凸

C

它是包含 A 的最小凸集

命题 2.59

Conv(A) =
{

n∑
k=1

λkxk : x1, · · · , xn ∈ A, λ1, · · · , λn ∈ A with
n∑

k=1

λk = 1, n ∈ N

}

定义 2.60（Minkowski 泛函）设 X 是向量空间，C 是包含 0 的凸集，定义

PC : X −→ [0,+∞]

x 7−→ inf
{
t > 0 :

x

t
∈ C

}
称为 C 的 Minkowski 泛函（度规,gauge）

评价 PC(x) = +∞ ⇐⇒ {t > 0 : x
t
∈ C} = ∅；若 t > PC(x)，则

x
t
∈ C
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命题 2.61 (1) PC(0) = 0

(2) 正齐次性：PC(tx) = tPC(x), ∀x ∈ X, ∀t > 0

(3) 次可加性：PC(x+ y) ≤ PC(x) + PC(y), ∀x, y ∈ X

评价 PC 不一定是次线性泛函，因为可能取值 +∞

证明 (3). 不妨设 PC(x), PC(y) ∈ R，对 ∀ε > 0，记 λ = PC(x)+
ε
2
, µ = PC(y)+

ε
2
，则 x

λ
∈ C, y

µ
∈ C，由

C 是凸集知
x+ y

λ+ µ
=

λ

λ+ µ
· x
λ
+

µ

λ+ µ
· y
µ
∈ C

所以 λ+ µ ≥ PC(x+ y) =⇒ PC(x+ y) ≤ PC(x) + PC(y) + ε，令 ε→ 0 即得证 □

定义 2.62（均衡）设 X 是复向量空间，C 是包含 0 的凸集，如果 ∀x ∈ C, ∀θ ∈ R, eiθx ∈ C，则称
C 均衡

命题 2.63 复向量空间中每个均衡、吸收的凸集 C，它的 Minkowski 泛函 PC 是一个半范数

证明 由吸收知，PC 是次线性泛函（即 ∀x ∈ X,PC(x) <∞）；由均衡可知 PC 满足齐次性：
x
λ
∈ C ⇐⇒

eiθx
λ
∈ C，所以 PC(e

iθx) = PC(x)，故

PC(λx) = PC(|λ|ei arg λx) = |λ|PC(e
i arg λx) = |λ|PC(x)

则 PC 是半范数 □

定义 2.64（极大子空间）设 X 是实向量空间，M ⊂ X 是子空间，称 M 是 X 的极大子空间是指：

∀X 的子空间 Y，若 M ⫋ Y，则 Y = X

命题 2.65
M 是极大子空间 ⇐⇒ ∃x0 ∈ X, s.t. X =M ⊕ Span{x0} ⇐⇒ dim(X/M)

def
= Codim(M) = 1

证明 留作习题 □

定义 2.66（超平面,Hyperplane）定义极大子空间的平移为超平面，即 X 中的超平面可写为 M +x0，

其中 M 是 X 的极大子空间，x0 ∈ X

定义 2.67 对 X 上的线性泛函 f 和 r ∈ R，定义

Hr
f = {x ∈ X : f(x) = r}
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命题 2.68 L 是超平面 ⇐⇒ L = Hr
f for some f and r

证明 (⇐=) : 注意到 H0
f = Ker(f)，下证 H0

f 极大

取 x0 ∈ X\H0
f，则 f(x − f(x)

f(x0)
x0) = 0, ∀x ∈ X，进而 x − f(x)

f(x0)
x0 ∈ Ker(f) = H0

f , ∀x ∈ X，所以

∀x ∈ X 有分解 x =
(
x− f(x)

f(x0)
x0

)
+ f(x)

f(x0)
x0，且 x0 /∈ H0

f，故为直和分解，即

X = H0
f ⊕ Span{x0}

令 r = f(x0)，则

x ∈ Hr
f ⇐⇒ f(x− x0) = f(x)− f(x0) = 0 ⇐⇒ x− x0 ∈ H0

f ⇐⇒ x ∈ H0
f + x0

即 Hr
f = H0

f + x0

(=⇒) : 设 L 是超平面，则 ∃ 极大子空间 M, s.t. L =M + x0, x0 ∈ X\M,X =M ⊕ Span{x0}，定义

f : X −→ R

y + λx0 7−→ λ

则 f(M) = 0 且 f(x0) = 1，因此 M ⊂ H0
f，由 M 极大知 M = H0

f，进而 ∀x ∈ L, f(x) = f(y)+ f(x0) =

1 =⇒ L = H1
f □

命题 2.69 设有赋范空间 (X, || · ||)，则 f ∈ X∗ =⇒ Hr
f 是闭的超平面

定义 2.70（集合被超平面分离）设 X 是实向量空间，A,B ⊂ X，称超平面 Hr
f 分离 A,B 是指f(x) ≤ r, ∀x ∈ Af(y) ≥ r, ∀y ∈ B

⇐⇒ sup
x∈A

f(x) ≤ r ≤ inf
y∈B

f(y)

或 f(x) ≥ r, ∀x ∈ Af(y) ≤ r, ∀y ∈ B
⇐⇒ sup

y∈B
f(y) ≤ r ≤ inf

x∈A
f(x)

称 Hr
f 严格分离 A,B 是指

sup
x∈A

f(x) < r < inf
y∈B

f(y)

或

sup
y∈B

f(y) < r < inf
x∈A

f(x)

定理 2.71 设 X 是实赋范空间，C 是有内点的凸集，则 x0 /∈ C =⇒ ∃f ∈ X∗, ∃r ∈ R, s.t. Hr
f 分离

x0 和 C
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证明 考虑对 x0, C 同时平移，我们可不妨设 0 是 C 的内点，因此 C 是吸收的，故 PC 是次线性泛函，

且由习题 1.5.1 知 C = {x ∈ X : PC(x) ≤ 1}

PC(x) < 1 ⇐⇒ x ∈ int(C)

由 x0 /∈ C 知 PC(x0) ≥ 1；因为 0 是 C 的内点，所以 ∃ε > 0, s.t. B(0, ε) ⊂ C，所以 ∀0 6= x ∈ X，有
ε x
||x|| ∈ B(0, ε) ⊂ C，所以

PC(ε
x

||x||
) ≤ 1 =⇒ PC(x) ≤

||x||
ε
, ∀x ∈ X

令 M
def
= Span{x0}，定义

f0 :M −→ R

x = λx0 7−→ λPC(x0)

则 f0(x) ≤ PC(x), ∀x ∈M，由实 HBT 知，存在 X 上线性泛函 f, s.t.f |M = f0 =⇒ f(x0) = f0(x0) = PC(x0) ≥ 1

f(x) ≤ PC(x), ∀x ∈ X =⇒ f(x) ≤ PC(x) ≤ 1, ∀x ∈ C

因此 H1
f 分离 x0 和 C，最后证明 f ∈ X∗，因为 f(x) ≤ PC(x) ≤ 1

ε
||x||，代入 −x 得 −f(x) = f(−x) ≤

1
ε
||x||，因此 |f(x)| ≤ 1

ε
||x||, ∀x ∈ X，即 f ∈ X∗ □

评价 上面的构造知 r = f0(x0) = PC(x0)

定理 2.72（HST1,Hyperplane Seperation Theorem）设 X 是实赋范空间，A 是开凸集，B 是凸集，

则 A ∩B = ∅ =⇒ ∃Hr
f 闭且分离 A,B

证明 定义 C = A−B = {x− y : x ∈ A, y ∈ B}，则我们有如下观察
(1) C 是凸集（自行验证）

(2) C 是开集，因为 C =
⋃

y∈B

(A− y)，而每个 A− y 均为开集

(3) 0 /∈ C，因为 A ∩B = ∅
由定理2.71知，存在 H0

f（由上一个定理的证明知 r = PC(0) = 0）分离 C 和 0，即 ∃f ∈ X∗, s.t. sup
z∈C

f(z) ≤

0 = f(0)，又因为

sup
z∈C

f(z) = sup
x∈A
y∈B

[f(x)− f(y)] A∩B=∅
======= sup

x∈A
f(x)− inf

y∈B
f(y) ≤ 0

所以取 r = 1
2
(sup
x∈A

f(x) + inf
y∈B

f(y))，则

sup
x∈A

f(x) ≤ r ≤ inf
y∈B

f(y)

即 Hr
f 分离 A,B，且由 f ∈ X∗ 知 Hr

f 是闭子空间 H0
f = Ker(f) 的平移，故它是闭的 □
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定理 2.73（HST2）设 X 是实赋范空间，A 是闭凸集，B 是紧凸集，若 A ∩B = ∅，则 ∃Hr
f 闭集，

严格分离 A,B

证明 由 A 紧 B 闭，A ∩B = ∅ 知 dist (A,B) > 0，取 ε = 1
4

dist (A,B)，定义

Aε = A+B(0, ε), Bε = B +B(0, ε)

可以验证 Aε, Bε 是开凸集，且 Aε ∩Bε = ∅，由 HST1 知 ∃f ∈ X∗, ∃r ∈ R, s.t.

sup
x∈Aε

f(x) ≤ r ≤ inf
y∈Bε

f(y)

因此

f(x+ εz) ≤ r ≤ f(y + εz), ∀x ∈ A, y ∈ B, z ∈ B(0, 1)

所以 r ≤ f(y)+εf(z)，故 −f(z) ≤ f(y)−r
ε
，取上极限得 sup

z∈B(0,1)

f(−z) ≤ f(y)−r
ε
，故 r ≤ f(y)−ε||f ||, ∀y ∈ B，

对 f(y) 取下极限得

r ≤ inf
y∈B

f(y)− ε||f || < inf
y∈B

f(y)

同理

sup
x∈A

f(x) < sup
x∈A

f(x) + ε||f || ≤ r

□

评价 ||f || = sup
z∈B(0,1)

f(z)

推论 2.74（Ascoli）设 X 是实赋范空间，C 是闭凸集，若 x0 /∈ C，则 ∃f ∈ X∗, ∃r ∈ R, s.t.

sup
x∈C

f(x) < r < f(x0)

证明 在定理2.73中取 A = C,B = {x0} 即可 □

推论 2.75 设 X 是实赋范空间，M ⊆ X 是子空间，则

M 6= X ⇐⇒ ∃f ∈ X∗, f 6= 0, s.t. f(M) = {0}

等价地有

M = X ⇐⇒ f ∈ X∗ with f(M) = {0} implies f = 0

证明 (⇐=) : 显然

(=⇒) : 由条件知 ∃x0 ∈ X\M，由推论2.74（M 是闭凸集）知，∃f ∈ X∗, ∃r ∈ R, s.t.

sup
x∈M

f(x) < r < f(x0)

64



《泛函分析》课堂笔记 § 2.4 对偶空间

因为向量空间上的非零线性泛函无界，所以由 sup
x∈M

f(x) < r 知 f |M = 0，所以 f(M) = 0，故 0 < r <

f(x0) =⇒ f 6= 0 □

推论 2.76（Mazur）设 X 是实赋范空间，C 是开凸集，F 是线性子流形（即线性子空间的平移），若

C ∩ F = ∅，则 ∃Hr
f 闭集，使得

(1) F ⊂ Hr
f

(2) sup
x∈C

f(x) ≤ r

证明 设 F = M + x0，其中 M ⊆ X 是子空间，由 HST1 知，∃f ∈ X∗, ∃s ∈ R, s.t. sup
x∈C

f(x) ≤ s ≤

inf
y∈F

f(y) = inf
z∈M

f(z) + f(x0) 因此 inf
z∈M

f(z) ≥ s− f(x0)，故（非零线性泛函无界）f |M = 0,M ⊆ H0
f，所

以 F ⊆ Hr
f，其中 f(x0) = r，此时

sup
x∈C

f(x) ≤ s ≤ f(x0) = r

□

定义 2.77（支撑超平面）称超平面 Hr
f 是凸集 C 在 x0 处的支撑超平面是指

(1) C 完全落在 Hr
f 的一侧

(2) x0 ∈ C ∩Hr
f

即 sup
x∈C

f(x) ≤ r = f(x0) 或 inf
x∈C

f(x) ≥ r = f(x0)

定理 2.78 设 X 是实赋范空间，C 是有内点的闭凸集，则在 ∀x0 ∈ ∂C 处均有 C 的一个支撑超平面

证明 令 E
def
= int(C)，则 E 为开凸集，令 F = {x0}（它是零维线性子流形），由推论2.76知，∃f ∈ X∗, ∃r ∈

R, s.t. sup
x∈E

f(x) ≤ r，且 {x0} ⊂ Hr
f，由 f 连续知 sup

x∈C
f(x) ≤ r = f(x0) □

例 2.79 C = B(0, r)，则 ∀x0 ∈ ∂B(0, r) 处均有 C 的支撑超平面

证明 由推论2.50知，∃f ∈ X∗, ||f || = 1, s.t. f(x0) = ||x0|| = r，而

sup
x∈C

f(x) ≤ ||f || sup
x∈C
||x|| = r

□

§ 2.4 对偶空间
本节考虑对偶空间 X∗ = L (X,K)，其中范数定义为算子范数 || · ||X→K

首先回忆 Riesz 表示定理

定理 2.80（Riesz 表示定理）设 H 是 Hilbert 空间，则
(1) ∀y ∈ H, fy(x)

def
= 〈x, y〉 , ∀x ∈ H，则 fy ∈ H∗ 且 ||fy|| = ||y||
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(2) ∀f ∈ H∗, ∃!yf ∈ H, s.t. f = fyf

所以
J : H −→ H∗

y 7−→ fy

给出了一个从 H 到 H∗ 的线性等距同构，因此我们记 H∗ = H（等距同构意义下）

Q：Q：Q：(Lp)∗ 是什么样的？

定理 2.81（Riesz）设 1 < p <∞，则（在等距同构意义下）

(Lp)∗ = Lp′
, p′ =


p

p−1
, p > 1

∞, p = 1

即

(1) ∀g ∈ Lp′
，定义

Λg(f)
def
=

ˆ
fg, f ∈ Lp

则 Λg ∈ (Lp)∗，且 ||Λg|| = ||g||p′

(2) ∀Λ ∈ (Lp)∗, ∃!g ∈ Lp′
, s.t. Λ = Λg

也就是说
J : Lp′

−→ (Lp)∗

g 7−→ Λg

是线性等距同构

评价 如果 (Ω,M, µ) 是 σ-有限的（即 Ω 可写为可数个有限测度集合之并），则以上结论对 p = 1 也成

立；特别地我们有

(Lp[0, 1])∗ = Lp′
[0, 1], ∀1 ≤ p <∞

此外，我们暂时还不能回答 (L∞)∗ 是什么样的（详情可以参考吉田耕《泛函分析》第九章）

我们先证明 Ω = [0, 1] 的情形

证明 (1) Case 1. 1 < p <∞
对 ∀f ∈ Lp，由 Holder 不等式

|Λg(f)| =
∣∣∣∣ˆ

[0,1]

fgdx
∣∣∣∣ ≤ ||g||p′ ||f ||p

所以 Λg ∈ (Lp)∗，且 ||Λg|| ≤ ||g||p′

Claim：Claim：Claim：||Λg|| ≥ ||g||p′

Proof Of Claim : 定义 f0
def
= |g|p′−1sgn(g)，则|f0|p = |g|(p′−1)p = |g|p′ 同时积分

=⇒ ||f0||pp = ||g||p
′

p′

f0g = |g|p′ 同时积分
=⇒ Λg(f0) = ||g||p

′

p′
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因此

|Λg(f0)|
||f0||p

=
||g||p

′

p′

||g||
p′
p

p′

= ||g||p
′(1− 1

p )

p′ = ||g||p′

所以

||Λg|| ≥
|Λg(f0)|
||f0||p

= ||g||p′

Case 2. p = 1

对 ∀f ∈ L1，因为

|Λg(f)| =
∣∣∣∣ˆ

[0,1]

fgdx
∣∣∣∣ ≤ ||g||∞||f ||1

所以 Λg ∈ (L1)∗ 且 ||Λg|| ≤ ||g||∞
Claim：Claim：Claim：||Λg|| ≥ ||g||∞
Proof Of Claim : 对 ∀k ∈ N，定义

Ek =

{
t ∈ [0, 1] : |g(t)| > ||Λg||+

1

k

}
, fk = χ

Ek
sgn(g)

则

||fk||1 =
ˆ
Ek

|sgn(g)|dx ≤ m(Ek)

因为

||Λg|| ·m(Ek) ≥ ||Λg|| · ||fk||1 ≥ |Λg(fk)| =
∣∣∣∣ˆ

[0,1]

χ
Ek

sgn(g)gdx
∣∣∣∣ = ˆ

Ek

|g|dx ≥
(
||Λg||+

1

k

)
m(Ek)

所以 m(Ek) = 0, ∀k ∈ N，又因为

{t ∈ [0, 1] : |g(t)| ≥ ||Λg||} =
∞⋃
k=1

Ek

它是零测集，由本性上确界的定义知 ||g||∞ ≤ ||Λg||
(2) 我们需要一个技术性引理

引理 2.82 设 g ∈ L1，如果 ∃C > 0, s.t.
∣∣∣´[0,1] fgdx

∣∣∣ ≤ C||f ||p, ∀f ∈ L∞，则 g ∈ Lp′
，且 ||g||p′ ≤ C

Proof of Lemma：Case 1. 1 < p <∞
考虑对 g 截断，令 gk

def
= gχ{|g|≤k}，其中 {|g| ≤ k} = {t ∈ [0, 1] : |g(t)| ≤ k}，令 fk

def
= |gk|p

′−1sgn(gk)，
则 

fk ∈ L∞

||fk||pp =
´
[0,1]
|gk|(p

′−1)pdx = ||gk||p
′

p′

fkg = fkgk = |gk|p
′

对第三行两边同时积分得

||gk||p
′

p′ =

∣∣∣∣ˆ
[0,1]

fkgdx
∣∣∣∣ ≤ C||fk||p = C||gk||

p′
p

p′
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因此 ||gk||p′ ≤ C，注意到 gk → g，由 Fatou 引理知
ˆ
[0,1]

|g|p
′dx ≤ lim inf

k→∞

ˆ
[0,1]

|gk|p
′dx ≤ Cp′

所以 g ∈ Lp′
，且 ||g||p′ ≤ C

Case 2. p = 1，留做习题 □
现在回到 (2) 的证明，我们先考虑示性函数的情形，再由逼近推广到一般的函数

Step 1. 令
G(t)

def
= Λ(χ[0,t]), t ∈ [0, 1]

Claim：Claim：Claim：G ∈ AC[0, 1]
Proof Of Claim : 对 ∀ε > 0，令 δ

def
=
(

ε
||Λ||

)p
，对任意有限个互不相交的区间 {(αk, βk)}Nk=1 ⊂ [0, 1]

满足
N∑

k=1

(βk − αk) < δ，令

f
def
=

N∑
k=1

sgn(G(βk)−G(αk))χ(αk,βk]

则积分得 ||f ||pp ≤
n∑

k=1

(βk − αk) < δ，且

Λ(f) =
N∑

k=1

sgn(G(βk)−G(αk))
[
Λ(χ[0,βk])− Λ(χ[0,αk])

]
=

N∑
k=1

sgn(G(βk)−G(αk)) [G(βk)−G(αk)]

=
N∑

k=1

|G(βk)−G(αk)|

所以
N∑

k=1

|G(βk)−G(αk)| = |Λ(f)| ≤ ||Λ|| · ||f ||p ≤ ||Λ|| · δ
1
p = ε

因此 G ∈ AC[0, 1]，由微积分基本定理，∃g ∈ L1, s.t. G(t) =
´ t

0
g(s)ds, t ∈ [0, 1]，所以

Λ(χ[0,t]) = G(t) =

ˆ
[0,1]

χ
[0,t]gdx

由线性性知，Λ(ϕ) =
´
[0,1]

ϕgdx，其中 ϕ 为任意阶梯函数

Step 2.g ∈ Lp′

对 ∀f ∈ L∞ ⊂ Lp，令 M
def
= ||f ||∞ + 1，所以 ∃ϕk 阶梯函数 {ϕk}∞k=1, s.t.ϕk → f a.e

||ϕk||∞ ≤M
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又因为 |ϕk − f |p ≤ (2M)p，由控制收敛定理知

ˆ
[0,1]

|ϕk − f |pdx→ 0 as k →∞

所以

|Λ(f)− Λ(ϕk)| ≤ ||Λ|| · ||f − ϕk||p → 0 as k →∞

因此 Λ(f) = lim
k→∞

Λ(ϕk)，再由控制收敛定理知（控制函数为 Mg）

ˆ
[0,1]

fgdx DCT
= lim

k→∞

ˆ
[0,1]

ϕkgdx = lim
k→∞

Λ(ϕk) = Λ(f)

所以 ∣∣∣∣ˆ
[0,1]

fgdx
∣∣∣∣ = |Λ(f)| ≤ ||Λ|| · ||f ||p, ∀f ∈ L∞

由引理知 g ∈ Lp′
且 ||g||p′ ≤ ||Λ||

Step 3.Λ(f) =
´
[0,1]

fgdx, ∀f ∈ Lp

对 ∀ε > 0, ∃ϕ 阶梯函数（{阶梯函数}
dense
⊂ Lp），使得

||f − ϕ||p <
ε

2(||Λ||+ ||g||p′)

所以 ∣∣∣∣Λ(f)− ˆ
[0,1]

fgdx
∣∣∣∣ ≤ |Λ(f)− Λ(ϕ)|+

∣∣∣∣Λ(ϕ)− ˆ
[0,1]

ϕgdx
∣∣∣∣+ ∣∣∣∣ˆ

[0,1]

ϕgdx−
ˆ
[0,1]

fgdx
∣∣∣∣

= ||Λ|| · |||f − ϕ||p + 0 + ||g||p′ · ||f − ϕ||p <
ε

2
+
ε

2
= ε

令 ε→ 0 即有 Λ(f) =
´
[0,1]

fgdx, ∀f ∈ Lp □

评价 利用放缩及 Holder 不等式可证明 L∞[0, 1] ⊂ Lp[0, 1] ⊂ L1[0, 1]（将 [0, 1] 换为任意有限测度空间均

成立）

定理 2.83
L1[0, 1] ⫋ (L∞[0, 1])∗

证明 (1) L1[0, 1] ⊂ (L∞[0, 1])∗

对 ∀g ∈ L1，因为

|Λg(f)| =
∣∣∣∣ˆ

[0,1]

fgdx
∣∣∣∣ ≤ ||g||1||f ||∞, ∀f ∈ L∞

所以 Λg ∈ (L∞)∗，且 ||Λg|| ≤ ||g||1
(2) L1 6= (L∞)∗

因为 C[0, 1] 是 L∞[0, 1] 的闭子空间（因为对 ∀f ∈ C[0, 1], ||f ||∞ = esssup
x∈[0,1]

|f(x)| = max
x∈[0,1]

|f(x)| =

||f ||C[0,1]），所以 ∃f0 ∈ L∞[0, 1]\C[0, 1], s.t. d = dist (f0, C[0, 1]) > 0，由定理2.55知，∃Λ ∈ (L∞[0, 1])∗ with
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||Λ|| = 1, s.t. Λ(C[0, 1]) = {0}

Λ(f0) = d

假设 ∃g ∈ L1, s.t. Λ = Λg, s.t. Λ(f) =
´
[0,1]

fgdx, ∀f ∈ L∞[0, 1]，则

ˆ
[0,1]

fgdx = 0, ∀f ∈ C[0, 1]

又因为 C[0, 1]
dense
⊂ L1[0, 1]，所以 ∃{fn}∞n=1 ⊆ C[0, 1], s.t.

||fk − sgn(g)||1 → 0 as n→∞

由 Riesz定理知（Lp 收敛 =⇒依测度收敛 =⇒存在子列 a.e收敛），存在子列 fnk
→ sgn(g) a.e x ∈ [0, 1]，

由控制收敛定理知 ˆ
[0,1]

|g|dx = lim
k→∞

ˆ
[0,1]

fkgdx = 0 =⇒ g = 0 a.e x ∈ [0, 1]

所以 Λ = 0，但与 Λ(f0) = d > 0 矛盾！ □

Q：Q：Q：C[0, 1]∗ =？

定义 2.84（有界变差函数空间）回忆实分析中的有界变差函全体为 BV [a, b]
def
=
{
f : V b

a (f) <∞
}
，

其中

V b
a (f)

def
= sup

∆:a=t0<t1<···<tn=b

n∑
k=1

|f(tk)− f(tk−1)|

我们在 BV [a, b] 上定义范数

||f ||BV
def
= |f(a)|+ V b

a (f)

可以验证 (BV [a, b], || · ||BV ) 是 Banach 空间，继续定义

BV0[a, b]
def
= {f ∈ BV [a, b] : f在(a, b)右连续, f(a) = 0}

可以验证 BV0[a, b] 是 BV [a, b] 的闭子空间，进而是 Banach 空间

定义 2.85（Riemann-Stieltjes 积分）设 f, g 是 [a, b] 上的实函数，I ∈ R，对 [a, b] 的划分 ∆ : t0 <

· · · < tn，任取 ξ = {ξk}nk=1, ξk ∈ [tk−1, tk]，定义

σ(∆, ξ)
def
=

n∑
k=1

f(ξk)[g(tk)− g(tk−1)]

如果 σ(∆, ξ)→ I as ||∆|| → 0（与 ∆ 的分法和 ξ 的选取无关），则称

I =

ˆ b

a

fdg
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为 f 关于 g 的 Riemann-Stieltjes 积分

评价 若 f ∈ C[a, b], g ∈ BV [a, b]，则
´ b

a
fdg 存在

定理 2.86（Riesz）
C[a, b]∗ = BV0[a, b]

也就是说

(1) ∀g ∈ BV0[a, b],Λg(f)
def
=
´ b

a
fdg, f ∈ C[a, b]，则 Λg ∈ C[a, b]∗

(2) ∀Λ ∈ C[a, b]∗, ∃!g ∈ BV0[a, b], s.t. Λ = Λg，且 ||g||BV = ||Λ||

定义 2.87（二次对偶）定义
X∗∗ = (X∗)∗ = L (X∗,K)

称为 X 的二次对偶 (bidual) 或第二共轭空间

对 ∀x ∈ X，定义映射
x∗∗ : X∗ −→ K

f 7−→ f(x)

则

|x∗∗(f)| = |f(x)| ≤ ||x|| · ||f ||, ∀f ∈ X∗

所以 x∗∗ ∈ X∗∗，且 ||x∗∗|| ≤ ||x||
另一方面，由 HBT 的推论2.50，∃f0 ∈ X∗ with ||f0|| = 1, s.t. x∗∗(f0) = f0(x) = ||x||，故

||x∗∗|| ≥ ||x∗∗(f0)|| = ||x||

因此 ||x∗∗|| = ||x||，故
i : X −→ X∗∗

x 7−→ x∗∗

是线性等距嵌入（等距蕴含单射），称为 X 到 X∗∗ 的自然映射或自然嵌入

定义 2.88（自反空间）如果自然映射 i : X → X∗∗, x 7→ x∗∗ 满射（从而是线性等距同构），则称 X

是自反的，记为 X∗∗ = X

评价 存在非自反的 Banach 空间 X，使得 X 与 X∗∗ 线性等距同构 (James,1950)

例 2.89 (1) 不完备的空间一定不自反

(2) 有限维赋范空间自反（课本习题 2.5.4）
(3) Hilbert 空间自反（留作习题）

71



《泛函分析》课堂笔记 § 2.4 对偶空间

定理 2.90 当 1 < p <∞ 时，Lp 自反

证明 即证明自然映射是满射，即 ∀Λ ∈ (Lp)∗∗, ∃u ∈ Lp, s.t. Λ(f) = u∗∗(f) = f(u), ∀f ∈ (Lp)∗，又因为

J : Lp′
−→ (Lp)∗

v 7−→ fv : u 7→
ˆ
uvdx

是线性等距同构

Lp′
(Lp)∗

K

J

φ Λ

令 ϕ = Λ◦J，则 ϕ ∈ (Lp′
)∗，又因为 (Lp′

)∗ = Lp，所以 ∃!u ∈ Lp, s.t. ϕ = fu，即 ϕ(v) =
´
vudx, ∀v ∈ Lp′

，

则对 ∀f ∈ (Lp)∗，令 vf
def
= J−1(f) ∈ Lp′

，即 vf 是 f 的表示向量，则

Λ(f) = Λ(J ◦ J−1(f)) = (Λ ◦ J)(vf ) = ϕ(vf ) =

ˆ
vfudx = f(u)

□

定理 2.91 C[a, b] 不自反

证明 假设 C[a, b] 自反，则对 ∀Λ ∈ C[a, b]∗∗, ∃u ∈ C[a, b], s.t. Λ(f) = f(u), ∀f ∈ C[a, b]∗，又因为 f ∈
C[a, b]∗，所以 ∃!vf ∈ BV0[a, b], s.t.

f(u) =

ˆ b

a

udvf

且 ||vf ||BV = ||f ||，令 c = a+b
2
，定义

Fc : C[a, b]
∗ −→ R

f 7−→ vf (c+ 0)− vf (c− 0)

则

|Fc(f)| = |vf (c+ 0)− vf (c− 0)| ≤ V b
a (vf ) = ||vf || = ||f ||

所以 Fc ∈ C[a, b]∗∗，由反证假设知，∃uc ∈ C[a, b], s.t. Fc(f) = f(uc) =
´ b

a
ucdvf , ∀f ∈ C[a, b]∗，令

v(t) =

ˆ t

a

uc(s)ds

则 v ∈ BV0[a, b]，令 J : BV0[a, b]→ C[a, b]∗, v 7→ fv, fv(u) =
´ b

a
udv，由 v 连续知 Fc(fv) = 0，所以

0 = Fc(fv) =

ˆ b

a

ucdv =

ˆ b

a

u2cdt =⇒ uc ≡ 0
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所以 Fc = 0，这与 Fc 的定义矛盾！ □

定理 2.92（Banach）X∗ 可分 =⇒ X 可分

评价 逆命题不成立，之后我们会证明 L1 可分但是 L∞ 不可分

证明 Step 1. 证明 X∗ 中的单位球面 S∗
1 可分

由 X∗ 可分知，∃{fn}n∈N
dense
⊂ X∗，不妨设 fn 6= 0, ∀n，令

gn =
fn
||fn||

, ∀n ∈ N

对 ∀g ∈ S∗
1 , ∃{fn} 的子列 fnk

→ g，所以

||g − gnk
|| ≤ ||g − fnk

||+ ||fnk
− gnk

||

= ||g − fnk
||+

∣∣∣∣∣∣∣∣fnk
− fnk

||fnk
||

∣∣∣∣∣∣∣∣
= ||g − fnk

||+
∣∣||fnk

|| − 1
∣∣→ 0

所以 {gn}n∈N
dense
⊂ S∗

1

Step 2. 证明 ∃{xn}n∈N ⊆ X, ||xn|| = 1, s.t.

Span({xn}n∈N)
dense
⊂ X

注意到 sup
x∈X

||x||=1

|gn(x)| = ||gn|| = 1，则 ∃xn ∈ X, ||xn|| = 1, s.t. |gn(xn)| > 1
2

Claim：Claim：Claim：Span({xn}n∈N) = X

Proof Of Claim : 假设不然，则 ∃x0 ∈ X\Span({xn}n∈N)，由 HBT 知，∃f ∈ X∗, ||f || = 1, s.t.

f(Span({xn}n∈N)) = 0, f(x0) = dist (x0, Span({xn}n∈N)) > 0

则
||gn − f || = sup

x∈X
||x||=1

|gn(x)− f(x)|

≥ |gn(xn)− f(xn)| = |gn(xn)| >
1

2

因为 f ∈ S∗
1，但是上式与 {gn}n∈N

dense
⊂ S∗

1 矛盾！

Step 3. 证明 SpanQ({xn}n∈N)
dense
⊂ X

留作习题 □

定理 2.93 当 1 ≤ p <∞ 时，Lp[0, 1] 可分

证明 {
2n∑
k=1

rkχ[ k
2n , k+1

2n )

∣∣∣∣rk ∈ Q, n ∈ N0

}
dense
⊂ Lp[0, 1]
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□

评价 具体过程可参考 Wheeden-Zyymund,Real Analysis，此处仅介绍

定理 2.94 L∞[0, 1] 不可分

证明 反证，假设 ∃{fn}n∈N
dense
⊂ L∞[0, 1]，对 ∀t ∈ (0, 1), ∃fnt

∈ B(χ[0,t],
1
3
)，而

dist (χ[0,t], χ[0,s]) = ||χ[0,t] − χ[0,s]||∞ = 1, ∀t 6= s

因此对不同的 t，B(χ[0,t],
1
3
) 互不相交，则我们有单射

ϕ : (0, 1) −→ N

t 7−→ nt

因此 (0, 1) 与 N 的某个子集一一对应，这显然矛盾！ □

定理 2.95 L1[0, 1] 不自反

证明 留作习题，提示：你可能会用到如下结论
X∗可分 =⇒ X可分

L1[0, 1]可分

L∞[0, 1]不可分

□

接下来介绍对偶算子

定理 2.96（对偶算子）设有赋范空间 (X, ||·||X), (Y, ||·||Y )，T ∈ L (X,Y )，则 ∃T ∗ ∈ L (Y ∗, X∗), s.t.

(T ∗f)(x) = f(Tx), ∀f ∈ Y ∗, ∀x ∈ X

我们称 T ∗ 为 T 的对偶算子，进而映射

∗ : L (X,Y ) −→ L (Y ∗, X∗)

T 7−→ T ∗

是线性等距嵌入

证明 设 f ∈ Y ∗，定义

Λf : X −→ K

x 7−→ f(Tx)
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则

|Λf (x)| = |f(Tx)| ≤ ||f || · ||Tx|| ≤ ||f || · ||T || · ||x||, ∀x ∈ X

故 Λf ∈ X∗, ||Λf || ≤ ||T || · ||f ||，定义
T ∗ : Y ∗ −→ X∗

f 7−→ Λf

则 T ∗ 线性，且

||T ∗f || = ||Λf || ≤ ||T || · ||f ||, ∀f ∈ Y ∗

故 T ∗ ∈ L (Y ∗, X∗)，且 ||T ∗|| ≤ ||T ||
接下来证明 ||T ∗|| ≥ ||T ||，对 ∀x ∈ X，我们要证 ||Tx|| ≤ ||T ∗|| · ||x||，不妨设 Tx 6= 0，则 ∃f ∈

Y ∗, ||f || = 1, s.t. f(Tx) = ||Tx||，故

||Tx|| = |f(Tx)| = |(T ∗f)(x)| ≤ ||T ∗f || · ||x|| ≤ ||T ∗|| · ||f || · ||x|| = ||T ∗|| · ||x||

进而 ||T || ≤ ||T ∗|| □

例 2.97 设有线性映射 T : Kn → Km, x 7→ Ax,A 是 m× n 阶矩阵，则

T ∗ : (Km)∗ −→ (Kn)∗

y 7−→ AT y

证明留作习题

定理 2.98（Pettis）自反空间的闭子空间自反

证明 设 X 是自反空间，Y 是 X 的闭子空间，只需证明 ∀z ∈ Y ∗∗, ∃y ∈ Y, s.t. z(f) = f(y), ∀f ∈ Y ∗（即

z = y∗∗），定义算子

T : X∗ −→ Y ∗

f 7−→ f |Y

则 T ∈ L (X∗, Y ∗)，则存在对偶算子 T ∗ ∈ L (Y ∗∗, X∗∗), s.t.

(T ∗z)(f) = z(Tf), ∀f ∈ X∗

由 X 自反知自然映射 i : X → X∗∗, x 7→ x∗∗ 是满射，又因为 T ∗z ∈ X∗∗，则 ∃y ∈ X, s.t. T ∗z = y∗∗，即

(T ∗z)(f) = y∗∗(f) = f(y), ∀f ∈ X∗

Claim：Claim：Claim：y ∈ Y
Proof Of Claim : 假设不然，则 d = dist (y, Y ) > 0，进而 ∃f̃ ∈ X∗, s.t.

f̃(Y ) = {0}, f̃(y) = dist (y, Y ) > 0

则 T f̃ = f̃ |Y = 0，另一方面 f̃(y) = (T ∗z)(f̃) = z(T f̃) = 0，矛盾！
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Claim：Claim：Claim：z(f) = f(y), ∀f ∈ Y ∗

对 ∀f ∈ Y ∗，由 HBT 知 ∃F ∈ X∗, s.t. F |Y = f，则

f = TF =⇒ z(f) = z(TF ) = (T ∗z)(F ) = F (y)
y∈Y
==== f(y)

□

§ 2.5 弱收敛

定义 2.99（弱收敛）设有赋范空间 (X, || · ||)，称 {xn}∞n=1 ⊂ X 弱收敛于 x0 ∈ X 是指

f(xn)→ f(x0), ∀f ∈ X∗

记为 xn
w→ x0 或 xn ⇀ x0，并称 x0 为 {xn}∞n=1 的弱极限

命题 2.100 弱极限（如果存在）唯一

证明 设 xn
w→ x0, yn

w→ y0，即 f(xn)→ f(x0), f(xn)→ f(y0), ∀f ∈ X∗，即 f(x0) = f(y0), ∀f ∈ X∗，由

HBT 的推论知 x0 = y0 □

评价 范数拓扑（依范数收敛）下的收敛称为强收敛

命题 2.101 强收敛 =⇒ 弱收敛

证明 若 ||xn − x|| → 0，则

|f(xn)− f(x0)| ≤ ||f || · ||xn − x0|| → 0, ∀f ∈ X∗

□

例 2.102 在 L2(T) 中

ek(t)
def
= e−2πikt, t ∈

[
−1

2
,
1

2

)
, k ∈ Z

我们有 ek
w→ 0 as |k| → ∞

证明 对 ∀f ∈ L2(T)∗, ∃!v ∈ L2(T), s.t.

f(u) =

ˆ 1
2

− 1
2

u(t)v(t)dt, u ∈ L2(T)

则

f(ek) =

ˆ 1
2

− 1
2

v(t)e−2πiktdt = v̂(k)

由 Riemann-Lebesgue 引理知 f(ek) = v̂(k)→ 0，即 ek
w→ 0 □
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定理 2.103 若 dimX <∞，则 X 中的强收敛与弱收敛等价

证明 设 dimX = m,X 有一组基 {e1, · · · , em}，由强收敛蕴含弱收敛知，只需证明弱收敛蕴含强收敛，
假设 xn

w→ x0，设 xn =
m∑

k=1

α
(n)
k ek, ∀n ∈ N, x0 =

n∑
k=1

α
(0)
k ek，由课本习题 2.4.7 知，∃X∗ 中的一组基

{f1, · · · , fm}, s.t. fj(ek) = δjk，由弱收敛知 fj(xn)→ fj(x0), 1 ≤ j ≤ m，因为 fj(xn) = α
(n)
j , fj(x0) = α

(0)
j ，

所以 α
(n)
j → α

(0)
j , 1 ≤ j ≤ m，进而

||xn − x0||∞ → 0 where ||x||∞ = max
1≤j≤m

|αj |

由于有限维空间中范数均等价，所以 ||xn − x0|| → 0 □

评价 逆命题不成立，即弱收敛与强收敛等价并不能推出 dimX <∞，反例：Schur 空间，见汪林《泛函
分析中的反例》P76

定理 2.104（Mazur）若 xn
w→ x0，则 x0 ∈ Conv({xn}∞n=1)

证明 记 C
def
= Conv({xn}∞n=1)，假设 x0 /∈ C，由 Ascoli 定理知，∃f ∈ X∗, ∃α ∈ R, s.t.

sup
x∈C

f(x) < α < f(x0)

特别地有 f(xn) < α < f(x0), n = 1, 2, · · ·，这说明 f(xn) ↛ f(x0)，这与 xn
w→ x0 矛盾！ □

定义 2.105（泛函的弱 ∗ 收敛）称 {fn}∞n=1 ⊂ X∗ 弱 ∗ 收敛于 f ∈ X∗，若

fn(x)→ f(x), ∀x ∈ X

记为 fn
w∗

→ f

命题 2.106 在 X∗ 中，强收敛 =⇒ 弱收敛 =⇒ 弱 ∗ 收敛

证明 设 fn
w→ f，则 Λ(fn)→ Λ(f), ∀Λ ∈ X∗∗，则对 ∀x ∈ X,x∗∗(fn)→ x∗∗(f)，即

∀x ∈ X, fn(x)→ f(x) =⇒ fn
w∗

→ f

□

命题 2.107 X 自反 =⇒ X∗ 中的弱 ∗ 收敛与弱收敛等价

证明 只需注意到在自反空间 X 中，对 ∀x ∈ X

x∗∗(fn)→ x∗∗(f) ⇐⇒ fn(x)→ f(x)

□
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定理 2.108 设有赋范空间 (X, || · ||)，则

xn
w→ x0 ⇐⇒


sup
n
||xn|| <∞（从而弱收敛序列有界）

∃F
dense
⊂ X∗, s.t. f(xn)→ f(x0), ∀f ∈ F

证明 因为
xn

w→ x0 ⇐⇒ f(xn)→ f(x0), ∀f ∈ X∗

⇐⇒ x∗∗n (f)→ x∗∗0 (f), ∀f ∈ X∗

由 Banach-Steinhaus 定理2.24，这等价于（另一方向平凡）
sup
n
||x∗∗n || <∞

∃F
dense
⊂ X∗, s.t. x∗∗n (f)→ x∗∗0 (f), ∀f ∈ F

由 X 自反知，自然映射 i : X → X∗∗ 是等距同构，翻译回来即等价于
sup
n
||xn|| <∞（从而弱收敛序列有界）

∃F
dense
⊂ X∗, s.t. f(xn)→ f(x0), ∀f ∈ F

□

定理 2.109 设 X 是 Banach 空间，fn, f ∈ X∗，则

fn
w∗

→ f ⇐⇒


sup
n
||fn|| <∞

∃M
dense
⊂ X, s.t. fn(x)→ f(x), ∀x ∈M

定义 2.110（弱列紧、弱 ∗ 列紧）设有赋范空间 (X, || · ||)，称 M ⊂ X 弱列紧，是指 M 中每个序

列都有弱收敛子列；称 F ⊂ X∗ 弱 ∗ 列紧是指 F 中每个序列都有弱 ∗ 收敛的子列

定理 2.111（可分 Banach-Alaoglu 定理）X 可分 =⇒ X∗ 中的有界集弱 ∗ 列紧

评价 一般 Banach-Alaoglu 定理：X∗ 中的闭单位球弱 ∗ 紧（本课程没有定义弱 ∗ 紧，这里仅介绍）

证明 设 {fn}∞n=1 ⊂ X∗ 有界，令 C = sup
n
|||fn||，则 X 可分 =⇒ ∃{xm}∞m=1

dense
⊂ X，对任意固定

的 m, {fn(xm)}∞n=1 是有界数列，它有收敛子列，用对角线法可取得 {fn}∞n=1 的子列 {fnk
}∞k=1, s.t. ∀m,

{fnk
(xm)}∞k=1 收敛

Claim：Claim：Claim：∃f ∈ X∗, s.t. fnk

w∗

→ f
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Proof Of Claim : ∀x ∈ X, ∀ε > 0, ∃xm ∈ {xn}∞n=1, s.t. ||x − xm|| < ε
3C
，再取 k 充分大使得

|fnk+p
(xm)− fnk

(xm)| < ε
3
，则

|fnk+p
(x)− fnk

(x)| ≤ |fnk+p
(x)− fnk+p

(xm)|+ |fnk+p
(xm)− fnk

(xm)|+ |fnk
(xm)− fnk

(x)|

≤ C||x− xm||+
ε

3
+ C||xm − x|| < ε

所以 f(x)
def
= lim

k→∞
fnk

(x) 存在，故

|f(x)| ≤ sup
n
|fn(x)| ≤ sup

n
||fn|| · ||x||

故 f ∈ X∗, fnk

w∗

→ f □

定理 2.112（Eberlein-Smulian）
(1) 自反空间中的有界集弱列紧

(2) 自反空间中的闭单位球弱自列紧

证明 (1). 只需证明 ∀{xn}∞n=1 ⊂ X with sup
n
||xn|| <∞ 均有子列 {xnk

}∞k=1 弱收敛

令 Y
def
= Span({xn}∞n=1)，则 Y 是 X 的闭子空间，由 pettis 定理知 Y 也是自反的，由 Y 的构造知 Y

是可分的（有可数稠密子集 SpanQ({xn}∞n=1)），则由 i : Y → Y ∗∗ 是等距同构知 Y ∗∗ 也可分，由 Banach
定理2.92知 Y ∗ 可分，再由可分 Banach-Alaoglu 定理2.111知 Y ∗∗ 中的有界集弱 ∗ 列紧，由 i : Y → Y ∗∗

等距知，{x∗∗n }∞n=1 有界，则 {x∗∗n }∞n=1 有弱 ∗ 收敛子列 {x∗∗nk
}∞k=1, s.t.

x∗∗nk

w∗

→ x∗∗0 for some x0 ∈ Y

则对 ∀f ∈ Y ∗，因为 f(xnk
) = x∗∗nk

(f) → x∗∗0 (f) = f(x0)，则对 ∀F ∈ X∗, F (xnk
) = (F |Y )(xnk

) →
(F |Y )(x0) = F (x0)，所以 xnk

w→ x0

(2). 设 sup
n
||xn|| ≤ 1，由 (1) 知 ∃x0 ∈ X 以及子列 {xnk

}∞k=1, s.t. xnk

w→ x0，由 HBT 知，∃f ∈
X∗, ||f || = 1, s.t. f(x0) = ||x0||，故

||x0|| = |f(x0)| = lim
k→∞

f(xnk
) ≤ sup

n
|f(xnk

)| ≤ sup
k
||xnk

|| ≤ 1

故 x0 也在闭单位球中 □

§ 2.6 谱理论

定义 2.113（Banach 代数）设 X 是复 Banach 空间，A,B ∈ L (X)，我们定义 A,B 的乘法

(AB)(x)
def
= A(Bx), ∀x ∈ X

容易验证这样定义的乘法具有如下性质

(1) (AB)C = A(BC)

(2) A(B + C) = AB +AC, (A+B)C = AC +BC

79



《泛函分析》课堂笔记 § 2.6 谱理论

(3) λ(AB) = (λA)B = A(λB), ∀λ ∈ C
(4) AI = A = IA

(5) ||AB|| ≤ ||A|| · ||B||
我们称 L (X) 在这样定义的乘法下为 Banach 代数

评价 由数学归纳法可得，对 ∀n ∈ N∗ 有

||An|| ≤ ||A||n

定义 2.114（可逆）称 A ∈ L (X) 可逆是指 ∃B ∈ L (X), s.t.

AB = I = BA

定义 2.115（谱）定义
σ(A)

def
= {λ ∈ C : λI −A不可逆}

称为 A 的谱 (Spectrum)，σ(A) 中的元素称为谱点；定义

ρ(A)
def
= C\σ(A) = {λ ∈ C : λI −A可逆}

称为 A 的预解集 (Resolvent set)，ρ(A) 中的元素称为 A 的正则值

定义 2.116（特征值）如果 λ ∈ C, s.t.

Ker(λI −A) 6= {0}

（即 λI −A 不是单射，故不可逆）即 ∃0 6= x ∈ X, s.t. Ax = λx，则称 λ 是 A 的特征值，记 A 的特

征值全体

σp(A) = {λ : λ是A的特征值}

为 A 的点谱

例 2.117 X = Cn, A ∈ L (Cn)，则由线性代数的知识

σ(A) = σp(A) 6= ∅, #σ(A) ≤ n

例 2.118 定义 C[0, 1] 上的乘法算子

A : C[0, 1] −→ C[0, 1]

u(t) 7−→ tu(t)

则 σp(A) = ∅

证明 假设 ∃λ ∈ C, s.t. (λI −A)u = 0，即 (λ− t)u(t) = 0, t ∈ [0, 1]，则由连续性知只能是 u ≡ 0，因此不

存在这样的 λ □
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对于给定的 λ ∈ C，我们有以下两种情况
Case 1. Ker(λI −A) 6= {0}，则 λ ∈ σp(A)
Case 2. Ker(λI −A) = {0}，我们按 A 是否满射分为以下情形

• Range(λI −A) 6= X,Range(λI −A) = X，此时称 λ 为 A 的连续谱点，记 λ ∈ σc(A)
• Range(λI −A) 6= X,Range(λI −A) 6= X，此时称 λ 为 A 的剩余谱点，记 λ ∈ σr(A)
• Range(λI −A) = X，此时 λI −A 即单又满，故它可逆，此时 λ ∈ ρ(A)

因此我们将 A 的谱 σ(A) 分解为不交并

σ(A) = σp(A) t σc(A) t σr(A)

例 2.119 考虑例2.118，对乘法算子 A，我们有

σ(A) = σr(A) = [0, 1]

证明 Step 1. 证明 C\[0, 1] ⊂ ρ(A)
对 ∀λ ∈ C\[0, 1]，下证 λI −A 可逆，考虑 λI −A 的形式，我们可以定义

T : C[0, 1] −→ C[0, 1]

u(t) 7−→ 1

λ− t
u(t)

所以 (λI −A)T = I = T (λI −A)，下证 T 是有界算子，因为

||Tu|| ≤ max
t∈[0,1]

1

|λ− t|
· ||u|| =⇒ T ∈ L (X)

即 T = (λI −A)−1 ∈ L (X)

Step 2. 证明 [0, 1] ⊂ σr(A)
设 λ ∈ [0, 1]，对 ∀v ∈ Range(λI −A)，则 ∃u ∈ C[0, 1], s.t. v = (λI −A)(u) = (λ− t)u(t), t ∈ [0, 1]，

所以 v(λ) = 0，因此

1 /∈ Range(λI −A), (1是打到1的常值函数)

即 Range(λI −A) 6= X,λ ∈ σr(A)，所以

[0, 1] ⊂ σr(A) ⊂ σ(A) ⊂ [0, 1]

即 σr(A) = [0, 1] □

例 2.120 定义 L2[0, 1] 上的乘法算子

A : L2[0, 1] −→ L2[0, 1]

u(t) 7−→ tu(t)

则 σ(A) = σc(A) = [0, 1]
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证明

Step 1. 证明 C\[0, 1] ⊂ ρ(A)
对 ∀λ ∈ C\[0, 1]，同2.119构造 T，证明 T ∈ L (X), T = (λI −A)−1 即可

Step 2. 证明 ∀λ ∈ [0, 1],Range(λI −A) 6= X

Claim：Claim：Claim：常值函数 1 /∈ Range(λI −A)
Proof Of Claim : 假设 1 ∈ Range(λI −A)，则 ∃u ∈ L2[0, 1], s.t. (λ− t)u(t) = 1，因此 u(t) = 1

λ−t
∈

L2[0, 1]，但是 t = λ 是瑕点，这与它平方可积矛盾！

Step 3. 证明对 ∀λ ∈ [0, 1],Range(λI −A)
dense
⊂ X

对 ∀v ∈ L2[0, 1], ∀ε > 0，令

uε(t)
def
=

1

λ− t
v(t)χ[0,1]\(λ−ε,λ+ε)

则 uε ∈ L2[0, 1]，又因为

Range(λI −A) 3 (λI −A)uε = vχ[0,1]\(λ−ε,λ+ε)
L2

→ v as ε→ 0+

（这是因为
´
[0,1]
|v − vχ[0,1]\(λ−ε,λ+ε)|2dx =

´
(λ−ε,λ+ε)

|v|2dx→ 0 as ε→ 0+），进而 v ∈ Range(λI −A)
结合 Step 2,3 得

[0, 1] ⊂ σc(A) ⊂ σ(A) ⊂ [0, 1]

即 σ(A) = σc(A) = [0, 1] □

定义 2.121（预解式）算子值函数

Rλ(A) : ρ(A) −→ L (X)

λ 7−→ (λI −A)−1

称为 A 的预解式

引理 2.122 设 T ∈ L (X), ||T || < 1，则

(1) (I − T )−1 ∈ L (X)

(2) (I − T )−1 =
∞∑
k=0

T k，称为 Von-Neumann 级数

(3) ||(I − T )−1|| ≤ 1
1−||T ||

证明 (1). 定义部分和 Sn
def
=

n∑
k=0

Tn，则

||Sn+p − Sn|| =

∣∣∣∣∣
∣∣∣∣∣

n+p∑
k=n+1

T k

∣∣∣∣∣
∣∣∣∣∣ ≤

n+p∑
k=n+1

||T k||

≤
n+p∑

k=n+1

||T ||k < ||T ||
n+1

1− ||T ||
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所以 {Sn}∞n=1 是 L (X) 中的基本列，由 L (X) 的完备性知，∃S ∈ L (X), s.t.

||Sn − S|| → 0 as n→∞

Claim：Claim：Claim：S = (I − T )−1

Proof Of Claim :

||Sn(I − T )− I|| = ||I − Tn+1 − I|| ≤ ||T ||n+1 → 0

所以
||S(I − T )− I|| = ||S(I − T )− Sn(I − T )||+ ||Sn(I − T )− I||

≤ ||S − Sn|| · ||I − T ||+ ||Sn(I − T )− I|| → 0 as n→∞

因此 S(I − T ) = I，同理可证 (I − T )S = I

(2).

S = lim
k→∞

Sk =
∞∑
k=0

T k

(3).

||S|| ≤ sup
n
||Sn|| ≤

1

1− ||T ||

□

定理 2.123 ρ(A) 是 C 中开集（⇐⇒ σ(A) 是 C 中闭集）

证明 设 λ0 ∈ ρ(A)，则 λ0I −A 可逆，下证 λ0 是 ρ(A) 的内点，因为

λI −A = λ0I −A+ (λ− λ0)I

= (λ0I −A)[I + (λ− λ0)(λ0I −A)−1]

当 |λ− λ0| < 1
||(λ0I−A)−1|| =

1
||Rλ(A)|| 时，由引理2.122知

B
def
= [I + (λ− λ0)Rλ0

(A)]−1 ∈ L (X)

此时有

(λI −A)−1 = BRλ0
(A) ∈ L (X)

即 D
(
λ0,

1
||Rλ0

(A)||

)
⊂ ρ(A)（D 表示圆盘） □

定理 2.124 设 A ∈ L (X)，则 σ(A) ⊂ D(0, ||A||)

证明 这等价于证明 C\D(0, ||A||) ⊂ ρ(A)，这又等价于证明 ∀λ ∈ C with |λ| > ||A||，有

(λI −A)−1 ∈ L (X)

因为 |λ| > ||A|| 时有
∣∣∣∣A

λ

∣∣∣∣ < 1，由引理知
(
I − A

λ

)−1 ∈ L (X)，乘以 λ 即 (λI −A)−1 ∈ L (X) □

83



《泛函分析》课堂笔记 § 2.6 谱理论

推论 2.125 σ(A) 是 C 中的紧集

证明 由定理2.123,2.124立得 □

定义 2.126（算子值全纯）设 X 是复 Banach 空间，Ω ⊂ C 是开集，称算子值函数

T : Ω −→ L (X)

λ 7−→ Tλ

在 λ0 ∈ Ω 全纯是指，∃ 邻域 U 3 λ0, s.t. ∀λ ∈ U, ∃Sλ ∈ L (X), s.t.∣∣∣∣∣∣∣∣Tλ+z − Tλ

z
− Sλ

∣∣∣∣∣∣∣∣→ 0 as |z| → 0

引理 2.127（R.I=Resolvent Identity, 第一预解式公式）

Rλ(A)−Rµ(A) = (µ− λ)Rλ(A)Rµ(A), ∀λ, µ ∈ ρ(A)

证明

Rλ(A) = (λI −A)−1 = (λI −A)−1(µI −A)(µI −A)−1

= (λI −A)−1[(λI −A) + (µ− λ)I](µI −A)−1

= Rµ(A) + (µ− λ)Rλ(A)Rµ(A)

□

定理 2.128 λ 7→ Rλ(A) = (λI −A)−1 是 ρ(A) 上的算子值全纯函数

证明 Step 1. 连续性
对 ∀λ0 ∈ ρ(A)

λI −A = (λ0I −A)[I + (λ− λ0)(λ0I −A)−1]

则当 |λ− λ0| < 1
||Rλ0

(A)|| 时，I + (λ− λ0)(λ0I −A)−1 可逆，对上式同时取逆得

Rλ(A) = [I + (λ− λ0)Rλ0
(A)]−1Rλ0

(A)

当 |λ− λ0| < 1
2||Rλ0

(A)|| 时，我们有估计

||Rλ(A)|| ≤ ||[I + (λ− λ0)Rλ0
(A)]−1|| · ||Rλ0

(A)||

≤ 1

1− 1
2

||Rλ0
(A)|| = 2||Rλ0

(A)||
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由第一预解式公式2.127，当 |λ− λ0| < 1
2||Rλ0

(A)|| 时

||Rλ(A)−Rλ0
(A)|| ≤ |λ− λ0| · ||Rλ(A)|| · ||Rλ0

(A)||

= 2||Rλ0
(A)||2|λ− λ0|

因此连续性得证

Step 2. 全纯性

∣∣∣∣∣∣∣∣Rλ(A)−Rλ0
(A)

λ− λ0

+Rλ0
(A)2

∣∣∣∣∣∣∣∣ = || −Rλ(A)Rλ0
(A) +Rλ0

(A)2|| ≤ ||Rλ0
(A)|| · ||Rλ(A)−Rλ0

(A)|| → 0 as λ→ λ0

□

定理 2.129（Gelfand, 谱不空定理）设 A ∈ L (X)，则 σ(A) 6= ∅

证明 反证，假设 σ(A) = ∅，则 ρ(A) = C，进而 λ 7→ Rλ(A) 是算子值整函数，对 ∀f ∈ L (X)∗，定义

uf (λ)
def
= f(Rλ(A)), ∀λ ∈ C

则 uf 是复值整函数，这是因为∣∣∣∣uf (λ)− uf (λ0)

λ− λ0

+ f(Rλ0
(A))2

∣∣∣∣ ≤ ||f || · ∣∣∣∣∣∣∣∣Rλ(A)−Rλ0
(A)

λ− λ0

+Rλ0
(A)2

∣∣∣∣∣∣∣∣→ 0 as λ→ λ0

当 |λ| > 2||A|| 时

||Rλ(A)|| =
∣∣∣∣∣∣∣∣ 1λ(I − A

λ
)−1

∣∣∣∣∣∣∣∣ ≤ 1

|λ|
· 1

1−
∣∣∣∣A

λ

∣∣∣∣ = 1

|λ| − ||A||
<

1

||A||

另一方面由连续性知 ||Rλ(A)|| 在 D(0, 2||A||) 上有界，所以 ∃C > 0, s.t.

||Rλ(A)|| ≤ C, ∀λ ∈ C

故

|uf (λ)| = |f(Rλ(A))| ≤ ||f || · ||Rλ(A)|| ≤ C||f ||

进而 uf 是有界整函数，由 Liouville 定理知 uf 是常值函数，故

f(Rλ(A)) = f(Rµ(A)), ∀λ, µ ∈ C, ∀f ∈ L (X)∗

由 HBT 的推论知 Rλ(A) = Rµ(A), ∀λ, µ ∈ C，由第一预解式公式2.127

Rλ(A)−Rµ(A) = (µ− λ)Rλ(A)Rµ(A), ∀λ, µ ∈ ρ(A)

此时 LHS 为零算子，而 RHS 为可逆算子，矛盾！ □
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定义 2.130（谱半径）对 ∀A ∈ L (X)，定义

rσ(A)
def
= sup{|λ| : λ ∈ σ(A)}

称为 A 的谱半径

定理 2.131（Gelfand, 谱半径公式）

rσ(A) = lim
n→∞

||An|| 1n

证明 Step 1. 证明 lim
n→∞

||An|| 1n 存在

令 r = inf
n
||An|| 1n，由下极限的定义知

lim inf
n→∞

||An|| 1n ≥ r

另一方面，对 ∀ε > 0, ∃m ∈ N, s.t. ||Am|| 1m < r+ε，对 ∀n ∈ N，由带余除法知 n = pnm+qn, 0 ≤ qn < m，

则
||An|| 1n = ||Apnm+qn || 1n ≤ ||Apnm|| 1n ||Aqn || 1n

≤ ||Am||
pnm

n ||A||
qn
n < (r + ε)

pnm
n ||A||

qn
n

因为 qn
n
→ 0 as n→∞, pnm

n
→ 1 as n→∞，所以

lim sup
n→∞

||An|| 1n ≤ r + ε

令 ε→ 0+ 得

lim sup
n→∞

||An|| 1n ≤ r ≤ lim inf
n→∞

||An|| 1n =⇒ lim
n→∞

||An|| 1n = r

Step 2.rσ(A) ≤ lim
n→∞

||An|| 1n

因为幂级数
∞∑

n=0

||An||zn 的收敛半径 R = 1

lim
n→∞

||An||
1
n
，则当 |λ| > lim

n→∞
||An|| 1n 时，z = 1

λ
落在收敛

圆内部，级数绝对收敛，即

∞∑
n=0

||An|| 1
λn

<∞ =⇒
∞∑

n=0

∣∣∣∣∣∣∣∣ An

λn+1

∣∣∣∣∣∣∣∣ <∞
进而由 L (X) 完备知

∞∑
k=1

An

λn+1 收敛

另一方面 ∣∣∣∣∣
∣∣∣∣∣
(

N∑
n=0

An

λn+1
(λI −A)− I

)∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣I − AN+1

λN+1
− I
∣∣∣∣∣∣∣∣→ 0 as N →∞
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所以 (λI −A)−1 =
∞∑

n=0

An

λn+1 ∈ L (X)，所以 λ ∈ ρ(A), ∀λ > lim
n→∞

||An|| 1n，所以

rσ(A) ≤ lim
n→∞

||An|| 1n

Step 3.rσ(A) ≥ lim
n→∞

||An|| 1n
假设 |λ| > rσ(A)，由定义知 λ ∈ ρ(A)，则对 ∀f ∈ L (X)∗, f(Rλ(A)) 在 λ 处全纯，则 f(Rλ(A)) 在

圆环 |λ| > rσ(A) 内全纯，故可展为收敛的 Laurent 级数；另一方面由 Step 2 知，当 |λ| > lim
n→∞

||An|| 1n
时，有

Rλ(A) =
∞∑

n=0

An

λn+1

两边同时作用 f 得（f 连续，可与求和号交换）

f(Rλ(A)) =
∞∑

n=0

f(An)

λn+1

由 Laurent 展开唯一知

f(Rλ(A)) =
∞∑

n=0

f(An)

λn+1
, ∀λ > rσ(A)

取 λ = rσ(A) + ε，由 Laurent 展开在圆环内部绝对收敛知

∞∑
n=0

|f(An)|
(rσ(A) + ε)n+1

<∞

令 Tn
def
= An

(rσ(A)+ε)n+1，由收敛级数的通项有界知

sup
n
|f(Tn)| = sup

n
||T ∗∗

n (f)|| <∞

由共鸣定理知 C
def
= sup

n
||T ∗∗

n || = sup
n
||Tn|| <∞，则

||An|| ≤ C(rσ(A) + ε)n+1 =⇒ lim
n→∞

||An|| 1n ≤ rσ(A) + ε

令 ε→ 0 即得 lim
n→∞

||An|| 1n ≤ rσ(A)
综上即得谱半径公式 □

评价 
lim inf
n→∞

xn = lim
n→∞

inf
j≥n

xj

lim sup
n→∞

xn = lim
n→∞

sup
j≥n

xj

例 2.132（右移位算子）定义右移位算子

A : l2 −→ l2

(x1, x2, · · · ) 7−→ (0, x1, x2, · · · )
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则我们有

σp(A) = ∅, σc(A) = ∂D, σr(A) = D

其中 D 是单位圆盘

证明 Step 1.σp(A) = ∅
假设 ∃λ ∈ C, ∃0 6= x ∈ l2, s.t. Ax = λx，即

(0, x1, x2, · · · ) = (λx1, λx2, · · · )

所以 

λx1 = 0

λx2 = x1

λx3 = x2

· · · · · ·

如果 λ = 0，则 x = 0，矛盾；如果 λ 6= 0，则 x1 = 0 =⇒ x2 = 0 =⇒ x3 = 0，以此类推可得 x = 0，矛盾！

Step 2. 证明 D ⊂ σr(A)
设 λ ∈ D，下证 Range(λI −A) 6= l2，由 l2 是 Hilbert 空间知，只需证明 Range(λI − A)⊥ 6= {0}，

令 z = (1, λ, λ
2
, · · · )，则对 ∀x ∈ l2

〈(λI −A)x, z〉 =
〈
(λx1, λx2 − x1, λx3 − x2, · · · ), (1, λ, λ

2
, · · · )

〉
= λx1+λ

2x2−λx1+λ3x3−λ2x2+· · · = 0

所以 z ∈ Range(λI −A)⊥

Step 3. 证明 ∂D ⊂ σc(A)
设 λ ∈ ∂D，首先证明 Range(λI − A) 6= l2：设 y ∈ Range(λI − A)，则 ∃x ∈ l2, s.t. y = (λI − A)x，

则 y1 = λx1

yk = λxk − xk−1, ∀k ≥ 2
=⇒

y1 = λx1

λk−1yk = λkxk − λk−1xk−1

因此
n∑

k=1

λk−1yk = λnxn, ∀n ∈ N

假设 Range(λI −A) = l2，特别地取 y = e1，则 ∃x ∈ l2, s.t. e1 = (λI −A)x，则 ∀n 有

λnxn =
n∑

k=1

λk−1yk = 1 =⇒ xn =
1

λn

故 x =
(
1
λ
, 1
λ2 , · · ·

)
，但是 |λ| = 1，故

∞∑
n=1

∣∣ 1
λn

∣∣2 =∞, x /∈ l2，矛盾！

其次证明 Range(λI −A)⊥ = {0}：对 ∀z ∈ Range(λI −A)⊥，设 en 为只有第 n 元为 1 的向量，则

{en} 是 l2 的规范正交基，则

0 = 〈z, (λI −A)en〉 = λzn − zn+1 =⇒ zn+1 = λzn
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所以 |zn+1| = |zn|, ∀n ∈ N，由 z ∈ l2 知，zn = 0, ∀n ∈ N，即 z = 0，即 Range(λI −A)⊥ = {0}
Step 4. 因为 ||A|| = 1，所以由定理2.124知 σ(A) ⊂ D，所以

D ⊂ σp(A) t σc(A) ⊂ σ(A) ⊂ D

再结合 D ⊂ σr(A), ∂D ⊂ σc(A) 知，σr(A) = D, σc(A) = ∂D □

§ 2.7 紧算子

定义 2.133（紧算子）设 X,Y 是两个 Banach 空间，设 A ∈ L (X,Y )

(1) 若 A 把每个有界集都映为列紧集，则称 A 是紧算子，记为 A ∈ C (X,Y )

(2) 若 A 把 X 中的每个弱收敛序列映为 Y 中的强收敛序列，则称 A 全连续

(3) 若 dim(Range(A)) <∞，则称 A 是有限秩算子，记 A ∈ F(X,Y )

命题 2.134 有限秩算子一定是紧算子，即

F(X,Y ) ⊂ C (X,Y )

评价 以下 M
bdd
⊂ X 表示 M 是 X 中的有界集 (Bounded)

证明 设 A ∈ F(X,Y )，对 ∀M
bdd
⊂ X，则 A(M)

bdd
⊂ Range(A)，又因为 Range(A) 维数有限，所以 A(M)

列紧，即 A ∈ C (X,Y ) □

例 2.135 记 I 是恒同算子，则

I ∈ C (X) ⇐⇒ dim(X) <∞

评价 X 中单位球面列紧 ⇐⇒ dimX <∞

例 2.136 设 K(·, ·) ∈ C([0, 1]2)，定义

(Tu)(s) =

ˆ 1

0

K(s, t)u(t)dt

则 T ∈ C (C[0, 1])

证明 设 F
bdd
⊂ C[0, 1]，接下来证明 T (F) 列紧，由 A-A 定理，我们只需证明

(1) T (F) 一致有界：设 C
def
= sup

u∈F
||u|| <∞，则

||Tu|| ≤ ||T || · ||u|| ≤ C||T ||, ∀u ∈ F

(2) T (F) 等度连续：对 ∀ε > 0, ∀u ∈ F，由 K 一致连续知 ∃δ > 0，使得若 |s′− s′′| < δ，则 |K(s′, t)−
K(s′′, t)| < ε

C
，因此对 ∀s′, s′′ ∈ [0, 1] with |s′ − s′′| < δ, ∀u ∈ F，有

|(Tu)(s′)− (Tu)(s′′)| =
ˆ 1

0

|K(s′, t)−K(s′′, t)| · |u(t)|dt < ε

C
· C = ε
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□

命题 2.137 C (X,Y ) 是 L (X,Y ) 的闭子空间

证明 设 {An}∞n=1 ⊂ C (X,Y ), ||An −A|| → 0，下证 A ∈ C (X,Y )：设 M
bdd
⊂ X，则 C

def
= sup

x∈M
||x|| <∞

Claim：Claim：Claim：A(M) 列紧

Proof Of Claim : 对 ∀ε > 0, ∃N, s.t.

||AN −A|| <
ε

3C

因为 AN (M) 列紧，所以它有有穷的 ε
3
-网 {ANx1, · · · , ANxm}，即

AN (M) ⊂
m⋃

k=1

B(ANxk,
ε

3
)

因此对 ∀x ∈M, ∃k ∈ {1, 2, · · · ,m}, s.t.

||ANx−ANxk|| <
ε

3

所以
||Ax−Axk|| ≤ ||Ax−ANx||+ ||ANx−ANxk||+ ||ANxk −Axk||

≤ C||A−AN |+
ε

3
+ C||AN −A|| < ε

所以 {Ax1, · · · , Axm} 是 A(M) 的 ε-网，由 ε 的任意性知 A(M) 列紧 □

命题 2.138 紧算子的值域可分

证明 因为 Range(A) = A(X) =
∞⋃
k=1

A(B(0, k))，而对 ∀k ∈ N, A(B(0, k)) 是列紧集，而列紧空间是可分

的，则对 ∀k ∈ N∗，我们设 Mk 是 A(B(0, k)) 的可数稠密子集，进而
∞⋃
k=1

Mk 是 Range(A) 的可数稠密

子集 □

命题 2.139 紧算子与有界算子的复合是紧算子，也就是说A ∈ C (X,Y )

T ∈ L (Y, Z)
=⇒ T ◦A ∈ C (X,Z)

T ∈ L (X,Y )

A ∈ C (Y, Z)
=⇒ A ◦ T ∈ C (X,Z)

证明 Case 1.A ∈ C (X,Y ), T ∈ L (Y, Z)

设 {xn}
bdd
⊂ X，由 A 紧知 {Axn} 有收敛子列 {Axnk

}∞k=1，由 T 连续知 {TAxnk
}∞k=1 收敛，即 T ◦A

紧
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Case 2.T ∈ L (X,Y ), A ∈ C (Y, Z)

设 M
bdd
⊂ X，由 T 有界知 T (M)

bdd
⊂ Y，由 A 紧知 A(T (M)) 列紧 □

定理 2.140 对 A ∈ L (X,Y )

(1) 紧 =⇒ 全连续
(2) 如果 X 是自反空间，则 A 紧 ⇐⇒ A 全连续

证明 (1). 假设 A 不全连续，则 ∃xn
w→ x0, s.t. ||Axn −Ax0||↛ 0，故 ∃ε0 > 0 和子列 {xnk

}∞k=1, s.t.

||Axnk
−Ax0

|| ≥ ε0, ∀k ∈ N∗

因为 xnk

w→ x0，即 x∗∗nk
(f)→ x∗∗0 (f), ∀f ∈ L (X,Y )，由共鸣定理知 {xnk

}∞k=1 有界，由 A紧知 {Axnk
}∞k=1

有收敛子列，不妨设仍为自身，则 ∃y ∈ Y, s.t. ||Axnk
− y|| → 0

另一方面，对 ∀f ∈ Y ∗，考虑 A 的共轭算子 A∗ ∈ L (Y ∗, X∗)，则 A∗f ∈ X∗，由 xnk

w→ x0 知

f(Axnk
−Ax0) = (A∗f)(xnk

− x0)→ 0 as k →∞

即在 Y 中有 Axnk

w→ Ax0，又因为 Axnk
→ y =⇒ Axnk

w→ y，由弱收敛极限唯一知 y = Ax0，即

||Axnk
−Ax0|| → 0，但这与 ||Axnk

−Ax0|| ≥ ε0 矛盾！
(2). 设 X 自反，下证 A 全连续 =⇒ A 紧

设 {xn}∞n=1

bdd
⊂ X，因为 X 自反，由 Eberlein-Smulian 定理2.112知，存在子列 xnk

w→ x0，由 A 全

连续知 ||Axnk
−Ax0|| → 0，故 A 是紧的 □

§ 2.8 Riesz-Fiedholm 理论

定理 2.141（Riesz-Fiedholm 理论）设 A ∈ C (X), T
def
= I −A，则

(1) dim Ker(T ) <∞
(2) Range(T ) 是 X 的闭子空间（我们也称 T 是闭值域算子）

(3) T 单 ⇐⇒ T 满（我们称该结论为 F.A,Fredholm-Alternative，中文翻译为 Fredholm 二择一律）
(4) Range(T ) = Ker(T ∗)⊥，这里，对 ∀F ⊂ X∗

F⊥ def
= {x ∈ X : f(x) = 0, ∀f ∈ F}

称为 F 在 X 中的零化子

(5) dim Ker(T ) = dim Ker(T ∗)

评价 为什么称 (3) 是二择一律？

对上述的 T，只有以下两种情形

• 若 ∀y ∈ Y, Tx = y 有唯一解，则 T 是双射

• 若 Tx = 0 有非零解，则 T 不是单射，由 F.A 知 T 不是满射，进而 ∃y ∈ X, s.t. Tx = y 无解

接下来我们逐个证明
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定理 2.142 设 A ∈ C (X), T
def
= I −A，则

dim Ker(T ) <∞

证明 令 M
def
= Ker(T ), SM

def
= M中的单位球面, SX

def
= X中的单位球面，则

x ∈ SM ⇐⇒

x ∈ SX

x−Ax = 0
⇐⇒

x ∈ SX

x = Ax ∈ A(SX)

所以 SM ⊂ A(SX)，由 A紧，SX 有界知 A(SX)列紧，故 SM 列紧，即M 中单位球面列紧 =⇒ dimM <∞
□

定理 2.143 设 A ∈ C (X), T = I −A，则 Range(T ) 是 X 的闭子空间

证明 子空间显然，下面验证闭性：设 Range(T ) 3 yn → y，则 ∃xn ∈ X, s.t. Txn = yn，下证 y ∈ Range(T )
Case 1. {xn}∞n=1

bdd
⊂ X

由 A紧知 {Axn}∞n=1 有收敛子列 {Axnk
}∞k=1，设 Axnk

→ u，因为 T = I−A，所以 xnk
= Axnk

+Txnk
，

故

xnk
→ u+ y =⇒ Txnk

→ T (u+ y)

由极限唯一知 y = T (u+ y) ∈ Range(T )
Case 2. {xn}∞n=1 无界

令 dn = dist (xn,Ker(T ))（已证 dim Ker(T ) <∞），则存在最佳逼近元 zn ∈ Ker(T ), s.t.

||xn − zn|| = dn

Claim：Claim：Claim：{xn − zn}∞n=1

bdd
⊂ X

Proof Of Claim : 假设不然，则 sup
n

dn = +∞，则存在 {dn} 的子列趋于无穷，不妨设 dn →∞，令

vn
def
=

xn − zn
||xn − zn||

, n = 1, 2, · · ·

则 Tvn = Txn−Tzn
dn

= yn

dn
→ 0 as n→∞（yn 是收敛列故有界，dn →∞）

另一方面，{vn}∞n=1

bdd
⊂ X，由 A 紧知 {Avn}∞n=1 有收敛子列，设 Avnk

→ w，所以Tvnk
→ 0

vnk
= Tvnk

+Avnk

=⇒ vnk
→ w

由 T 的连续性知 Tvnk
→ Tw，由极限的唯一性知 Tw = 0 =⇒ w ∈ Ker(T )，但是对 ∀z ∈ Ker(T )

||vn − z|| =
1

dn

||xn − (zn + dnz)|| ≥
dn

dn

= 1
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所以 dist (vn,Ker(T )) ≥ 1, ∀n ∈ N，但是 w ∈ Ker(T )，这与 vnk
→ w 矛盾！

因此 T (xn − zn) = Txn = yn，约化到 Case1 □

定理 2.144（Fredholm 二择一律）设 A ∈ C (X), T = I −A，则

T是单射 ⇐⇒ T是满射

证明 我们首先证明一个引理

引理 2.145 (1) Ker(T ) ⊂ Ker(T 2) ⊂ Ker(T 3) ⊂ · · ·
(2) ∃n, s.t. Ker(Tn) = Ker(Tn+1)

证明 (1). 平凡

(2). 反证，假设 ∀n ∈ N,Ker(Tn) ⫋ Ker(Tn+1)，由连续性可证 Ker(Tn) 是 Ker(Tn+1) 的闭子空间，

由 Riesz 引理，∃xn ∈ Ker(Tn+1), ||xn|| = 1, s.t.

dist (xn,Ker(Tn)) >
1

2

对 ∀n,m，不妨设 n > m，则（TnA = (I −A)nA = A(I −A)n = ATn）

Tn(Txn +Axm) = Tn+1xn + Tn(Axm) = 0 + ATnxm
n>m
= 0

所以 Txn +Axm ∈ Ker(Tn)，故

||Axn −Axm|| = ||xn − (Txn +Axm)|| ≥ dist (xn,Ker(Tn)) >
1

2

所以 {Axn}∞n=1 没有收敛子列，这与 A 的紧性矛盾！ □

现在回到 Fredholm 二择一律的证明
(⇐=) : 假设 T 是满射但不是单射，即 Ker(T ) 6= {0} =⇒ ∃0 6= x0 ∈ Ker(T )，由 T 满知 ∃x1 ∈

X, s.t. x0 = Tx1，再由 T 满知 ∃x2 ∈ X, s.t. x1 = Tx2，所以

0 6= x0 = Tx1 = T 2x2 = · · ·

所以 Tnxn = x0 6= 0

Tn+1xn = Tx0 = 0
=⇒ xn ∈ Ker(Tn+1)\Ker(Tn), ∀n ∈ N∗

这与引理的 (2) 矛盾！

(=⇒) : 假设 T 单但不满，令 X1 = T (X) = Range(T )，由定理2.143知 X1 是闭子空间，又因为 T

不满，所以 X1 是 X 的真闭子空间

令 X2 = T (X1)，它也是 X1 的闭子空间，下面证明 X2 6= X1，否则 T (X1) = X1，取 x0 /∈ X1，则

Tx0 ∈ T (X) = X1 = T (X1)，故 ∃x′0 ∈ X1, s.t. Tx′0 = Tx0，由选取知 x0 6= x′0，但这与 T 是单射矛盾！
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重复上述操作，我们得到闭子空间序列 {Xn}∞n=1, Xn
def
= Tn(X)，且 Xn+1 是 Xn 的闭子空间，由

Riesz 引理，∃xn ∈ Xn, ||xn|| = 1, s.t.
dist (xn, Xn+1) >

1

2

对 ∀n,m ∈ N∗，不妨设 n > m，则

Axn −Axm = −(xm −Axm) + (xn −Axn) + xm − xn
= xm − (xn − Txn + Txm)

因为 xn − Txn + Txm ∈ Tm+1(X) = Xm+1，所以 ||Axn −Axm|| ≥ dist (xm, Xm+1) >
1
2
，故 {Axn}∞n=1

没有收敛子列，这与 A 的紧性矛盾！ □

定理 2.146 设 A ∈ C (X), T = I −A，则

Range(T ) = Ker(T ∗)⊥

证明 我们直接介绍一个更强的引理

引理 2.147 设 T ∈ L (X)，则

(1) Ker(T ∗) =⊥ Range(T )
(2) Ker(T ∗)⊥ = Range(T )
其中对 ∀M ⊂ X,F ⊂ X∗，定义

⊥M
def
= {f ∈ X∗ : f(x) = 0, ∀x ∈M}

F⊥ def
= {x ∈ X : f(x) = 0, ∀f ∈ F}

证明 (1). 由定义直接验证

f ∈⊥ Range(T ) ⇐⇒ f(Tx) = 0, ∀x ∈ X ⇐⇒ (T ∗f)(x) = 0, ∀x ∈ X

⇐⇒ T ∗f = 0 ⇐⇒ f ∈ Ker(T ∗)

(2). 由 (1) 知 Ker(T ∗)⊥ = (⊥Range(T ))⊥ ⊃ Range(T )（由定义可验证这个包含关系），两边同时取
闭包得

Range(T ) ⊂ Ker(T ∗)⊥
闭
= Ker(T ∗)⊥

CLaim：CLaim：CLaim：Ker(T ∗)⊥ ⊂ Range(T )
Proof Of Claim : 设 x ∈ Ker(T ∗)⊥，则 x ∈ (⊥Range(T ))⊥，下证 x ∈ Range(T )，因为

x ∈ Range(T ) HBT⇐⇒ ∀f ∈ X∗ with f(Range(T )) = {0},必有f(x) = 0
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所以 x ∈ (⊥Range(T ))⊥

f ∈⊥ Range(T ) ⇐⇒ f(Range(T )) = {0}
=⇒ f(x) = 0

因此 x ∈ Range(T ) □

进而由 T 是闭值域算子知

Range(T ) = Range(T ) = Ker(T ∗)⊥

□

§ 2.9 Riesz-Schauder 理论

定理 2.148（Riesz-Schauder 理论）设 X 是复 Banach 空间，A ∈ C (X)，则

(1) 若 dimX =∞，则 0 ∈ σ(A)
(2) σ(A)\{0} = σp(A)\{0}，即非零谱点一定是特征值
(3) 非零特征值的特征子空间是有限维的

(4) 不同特征值的特征向量线性无关

(5) σ(A) 如果有极限点，极限点只可能是 0

证明 (1). 假设 0 ∈ ρ(A)，则 (0I − A)−1 ∈ L (A)，故 I = AA−1 为紧算子和有界算子复合仍为紧算子，

由例2.135知 dimX <∞，矛盾！
(2). 设 0 6= λ /∈ σp(A)，所以 λI − A 是单射，由二择一律知，λI − A 满，故 λI − A 是双射，

由逆算子定理知 (λI − A)−1 ∈ L (X)，故 λ ∈ ρ(A)，故 σ(A)\{0} ⊂ σp(A)\{0}，另一方向显然，故
σ(A)\{0} = σp(A)\{0}

(3). 对 ∀0 6= λ ∈ σp(A)，则

Ker(λI −A) = Ker(I − A

λ
)

由定理2.141(1) 知 dim Ker(λI −A) <∞
(4). 设 λ1, · · · , λn 是 A 的 n 个不同的特征值，x1, · · · , xn 是对应的特征向量，假设

n∑
k=1

αkxk = 0，

则 

A

(
n∑

k=1

αkxk

)
=

n∑
k=1

λkαkxk = 0

A2

(
n∑

k=1

αkxk

)
=

n∑
k=1

λ2
kαkxk = 0

· · · · · · · · ·

An−1

(
n∑

k=1

αkxk

)
=

n∑
k=1

λn−1
k αkxk = 0

写成矩阵的形式即 
1 1 · · · 1

λ1 λ2 · · · λn

...
...

...
λn−1
1 λn−1

2 · · · λn−1
n




α1x1

α2x2
...

αnxn

 = 0
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由 λi 6= λj , ∀i 6= j 知，Vandemonde 行列式的值
∏

1≤i<j≤n

(λi − λj) 非零，进而 αixi = 0, ∀1 ≤ i ≤ n，故

α1 = · · · = αn = 0，即 {x1, · · · , xn} 线性无关
(5). 假设 σ(A) 有极限点 λ0 6= 0，则 ∃λn ∈ σ(A), n = 1, 2, · · · , s.t. λn → λ0，我们可不妨设 {λn}∞n=1

互不相同，由 λn → λ0 知，∃N ∈ N∗, s.t. ∀n > N, λn 6= 0，故我们还可以不妨假设 {λn}∞n=1 均不为零，

则 1
λn
→ 1

λ0
=⇒ sup

n

∣∣∣ 1
λn

∣∣∣ <∞
取 xn ∈ Ker(λnI −A)，则 xn 是 λn 的特征值，由 (4) 知 {xn}∞n=1 线性无关，令

Xn = Span{x1, · · · , xn}

则 Xn−1 是 Xn 的闭子空间，由 Riesz 引理知 ∃yn ∈ Xn, ||yn|| = 1, s.t. dist (yn, Xn−1) >
1
2
，我们可设

yn =
n∑

k=1

αkxk，则

(λnI −A)yn =
n∑

k=1

αk(λn − λk)xk =
n−1∑
k=1

αk(λn − λk)xk ∈ Xn−1

对 ∀m,n ∈ N∗，不妨设 n > m，则∣∣∣∣∣∣∣∣A( ynλn

)
−A

(
ym
λm

)∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣yn − [yn −A( ynλn

)
+ ym − ym +A

(
ym
λm

)]∣∣∣∣∣∣∣∣ ≥ dist (yn, Xn−1) >
1

2

即
{
A
(

yn

λn

)}∞

n=1
没有收敛子列，而 ||yn|| ≡ 1,

{
1
λn

}∞

n=1
有界，这与 A 紧矛盾！ □

推论 2.149 A ∈ C (X) =⇒ σ(A) 至多可数

证明 由定理2.148(2) 知 σp(A)\{0} = σ(A)\{0}，我们只需证明 A 的特征值至多可数，令

Ek
def
= σp(A) ∩

{
λ ∈ C : |λ| > 1

k

}
, k = 1, 2, · · ·

则 σ(A)\{0} = σp(A)\{0} ⊂
∞⋃
k=1

Ek

Claim：Claim：Claim：#Ek <∞
Proof Of Claim : 假设 ∃k, s.t. #Ek =∞，因为 σ(A) ⊆ D(0, ||A||)，即 Ek 有界，一定有极限点 λ0，

而 dist (0, Ek) ≥ 1
k
，故 λ0 6= 0，这与定理2.148(5) 矛盾！

因此 σ(A) 至多可数 □

推论 2.150 设 dimX =∞, A ∈ C (X)，则 σ(A) 只有以下三种可能情形

(1) σ(A) = {0}
(2) σ(A) = {0, λ1, · · · , λn}
(3)（可数）σ(A) = {0, λ1, λ2, · · · } with λk → 0

其中 λk ∈ σp(A), k = 1, 2, · · ·

证明 令

F0
def
= σ(A) ∩ {λ ∈ C : |λ| ≥ 1}

96



《泛函分析》课堂笔记 § 2.9 Riesz-Schauder 理论

Fk
def
= σ(A) ∩

{
λ ∈ C :

1

k − 1
≤ |λ| < 1

k

}
所以 σ(A) ⊂

∞⋃
k=0

Fk，同推论2.150的证明可知 #Fk <∞，按 Fk 顺次排列 λ1, λ2, · · · □

例 2.151 A = 0 =⇒ σ(A) = σp(A) = {0}

例 2.152（Volterra 算子）在 L2[0, 1] 中，定义算子

(Au)(t) =

ˆ t

0

u(s)ds =
ˆ 1

0

K(t, s)u(s)ds

K(t, s) =

1, t ≥ s

0, t < s
∈ L2([0, 1]2)

由先前的作业题知 A ∈ C (L2[0, 1])，因为 dim(L2[0, 1]) =∞，由定理2.148(1)知 0 ∈ σ(A)；对 ∀0 6= λ ∈ C

Au = λu ⇐⇒
ˆ t

0

u(s)ds = λu(t) ⇐⇒

λu′(t) = u(t)

u(0) = 0

解微分方程得 u(t) = Ce
t
λ，再由初值 u(0) = 0 知 C = 0 =⇒ u ≡ 0，故 λ /∈ σp(A) =⇒ λ ∈ ρ(A)，所以

σ(A) = {0}

例 2.153
A : l2 −→ l2

(x1, x2, · · · ) 7−→ (0, x1,
x2
2
,
x3
3
, · · · )

可以验证 σ(A) = {0}（留作习题）

例 2.154 给定复数 λ1, · · · , λn ∈ C\{0}，定义

An : l2 −→ l2

(x1, x2, · · · ) 7−→ (λ1x1, λ2x2, · · · , λnxn, 0, · · · )

则 
||Ax||2 ≤

(
max
1≤k≤n

|λk|
)
||x||2

dim(Range(A)) <∞
=⇒ A ∈ F(l2) ⊂ C (l2)

记 ek 为只有第 k 元为 1 的向量，则Anek = λkek, ∀1 ≤ k ≤ n

Anen+1 = 0
=⇒ {0, λ1, · · · , λn} ⊂ σp(A)

而对 ∀λ ∈ C\{0, λ1, · · · , λn}

(λI −An)x = 0 ⇐⇒ ((λ− λ1)x1, · · · , (λ− λn)xn, λxn+1, · · · ) = 0
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因此 xi = 0, ∀i ∈ N∗，进而 λI −An 是单射，由二择一律知 λI −A 是双射，由逆算子定理知 λ ∈ ρ(A)，
故

σ(A) = {0, λ1, · · · , λn}

例 2.155 给定 {λk}∞k=1 ⊂ C\{0} 满足 λk → 0，定义

A : l2 −→ l2

(x1, x2, · · · ) 7−→ (λ1x1, λ2x2, · · · )

则我们有如下观察

(1) A 有界

||Ax||2 ≤
(

sup
k
|λk|

)
||x||2 =⇒ A ∈ L (l2)

(2) A ∈ C (l2)：回顾 C (l2) 是 L (l2) 的闭子集，如果能证明 A 是上个例子中 An 的极限，则 A ∈ C (l2)

由 λk → 0 知，对 ∀ε > 0, ∃N ∈ N∗, s.t. ∀k ≥ N, |λk| < ε，则

||Ax−ANx||2 =

(
∞∑

k=N+1

|λkxk|2
) 1

2

≤ ε||x||2

故 ||A−AN || → 0, A ∈ C (l2)

(3) σ(A) = {0, λ1, λ2, · · · }
因为 Aek = λek, ∀k ∈ N∗，则 {λk}∞k=1 ⊂ σp(A)，且不难看出 0 /∈ σp(A)，而 ∀λ ∈ C\{0, λ1, λ2, · · · }，
由 λk → 0 知

inf
k
|λ− λk| > 0

再令
T : l2 −→ l2

(x1, x2, · · · ) 7−→
(

x1
λ− λ1

,
x2

λ− λ2

, · · ·
)

则

||Tx||2 ≤
(

sup
k

1

|λ− λk|

)
||x||2 =⇒ T ∈ L (l2)

而且 T = (λI −A)−1 =⇒ λ ∈ ρ(A)，因此

σ(A) = {0, λ1, λ2, · · · }

□

98


	度量空间
	基本定义
	压缩映射原理
	完备化
	紧性
	赋范线性空间
	商空间
	内积空间

	线性算子与线性泛函
	线性算子
	纲推理
	三大定理
	对偶空间
	弱收敛
	谱理论
	紧算子
	Riesz-Fiedholm理论
	Riesz-Schauder理论


