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前言

本人于 2025 春修读了近世代数 (H)，授课老师为中国科学技术大学数学科学学院的陈小伍教授，课

程主页为http://home.ustc.edu.cn/ xwchen/ModernAlgebra.htm，课程计划如下：
(1) 环论、域论（重点：整环、商域与域扩张）

(2) 有限群论（重点：循环群与低阶对称群）

(3) Galois 理论与 Galois 大定理（重点：子域与子群的对应）
本课程主要参考以下书籍

(1) 冯克勤, 李尚志, 章璞.《近世代数引论》（这是课本，但是一般不按课本讲）
(2) M.Artin,《Algebra》
(3) J.Rotman,《Galois Theory》（域论，Galois 理论部分按这本讲）
以下是我的笔记，模版是我自己做的，值得一提的是笔记中仿照老师的板书，引入了 Ex 和 Fact ，其

中 Ex 是小伍老师上课留的练习，一般来说是补全一些证明过程的Gap，此外小伍老师还喜欢使用 Fact 来
呈现一些事实、结论；除此之外笔记中可能存在一些错误，敬请谅解！

涂嘉乐

2025 年春

http://home.ustc.edu.cn/~xwchen/ModernAlgebra.htm
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近世代数 (H) 课堂笔记

第一章 预备知识

§ 1.1 集合与映射

定义 1.1.1（集合与映射）我们用大写字母 X,Y, Z · · · 来表示集合，用符号 ⊆ 表示子集，如

∅ ⊆ X ⊆ X

称 f 为由集合 X 到 Y 的映射，是指对每个 x ∈ X 都有确定方法给出集合 Y 中唯一的对应元素，

这个元素也叫做 x 在映射 f 下的像，记作 f(x)，映射 f 通常写为

f : X −→ Y

x 7−→ f(x)

或者 X
f−→ Y

评价 我们称映射 f : X → Y, f ′ : X ′ → Y ′ 相等，是指 X = X ′, Y = Y ′, ∀x ∈ X, f(x) = f ′(x)

例 1.1 恒等映射：任给集合 X，称

IdX : X −→ X

x 7−→ x

为 X 到自身的恒等映射 (identity)

例 1.2 包含映射：设 S ⊆ X，称
inc : S −→ X

s 7−→ s

为 X 的子集 S 到 X 的包含映射 (inclusion)

定义 1.1.2（复合映射）设有映射 X
f−→ Y, Y

g−→ Z，则 f, g 的复合映射为

g ◦ f : X −→ Z

x 7−→ g(f(x))

复合映射满足

(1) 结合律：h ◦ (g ◦ f) = (h ◦ g) ◦ f
(2) 有单位：对 ∀f : X → Y，都有

f ◦ IdX = f = IdY ◦ f

定义 1.1.3（单射、满射与双射）设有映射 f : X → Y

(1) 称 f 是单射，若对 ∀x, x′ ∈ X，若 f(x) = f(x′)，则 x = x′，记为 X
f
↪−→ Y

(2) 称 f 是满射，若对 ∀y ∈ Y, ∃X ∈ x, s.t. f(x) = y，记为 X
f
−↠ Y

1



近世代数 (H) 课堂笔记 § 1.1 集合与映射

(3) 若 f 既是单射又是满射，则称 f 是双射，记作 f : X
∼−→ Y

例 1.3 IdX : X → X 是双射

定义 1.1.4（映射的像）设有映射 f : X → Y，称 Im(f) = {f(x)|x ∈ X} ⊆ Y 为映射 f 的像

评价 f 是满射 ⇐⇒ Im(f) = Y

Fact（单满分解）对任意映射 f : X → Y，我们有单满分解（也称典范分解）f = inc ◦ f̄，其中 f̄ =

f |X , inc : Im(f)→ Y，即如下交换图成立

X Y

Im(f)

f

f̄ inc

评价 上面的 inc 实际上应该写为 incIm(f),Y

Ex 设有映射 f : X → Y，求证

(1) f 是单射 ⇐⇒ 任意两个映射 g, g′ : Z → X 满足 f ◦ g = f ◦ g′，则 g = g′，即 f 满足左消去律

(2) f 是满射 ⇐⇒ 任意两个映射 h, h′ : Y → Z 满足 h ◦ f = h′ ◦ f，则 h = h′，即 f 满足右消去律

(3) f : X → Y 是双射 ⇐⇒ ∃g : Y → X, s.t. g ◦f = IdX , f ◦g = IdY，且此时 g 是唯一的，记 g = f−1，

称为 f 的逆

定义 1.1.5（集合的构造）
(1) 无交并：当 X ∩ Y = ∅ 时，记 X ∪ Y def

= X t Y，称为无交并
(2) 笛卡尔积：设 X,Y 是两个集合，定义它们的笛卡尔积为

X × Y = {(x, y) : x ∈ X, y ∈ Y }

其中 (x, y) = (x′, y′) ⇐⇒ x = x′, y = y′

(3) 记 X 到 Y 的全体映射构成的集合为

Map(X,Y ) = {f |f : X → Y }

(4) 幂集：对任意集合 X，称 X 的子集的全体为 X 的幂集，记为 P(X)

Ex 求证：存在双射 Map(X, {0, 1}) ∼−→ P(X)

Ex 求证：存在双射 Map(X t Y, Z) ∼−→ Map(X,Z)×Map(Y, Z)

Ex 求证：存在双射 Map(X,Y × Z) ∼−→ Map(X,Y )×Map(X,Z)

Ex（伴随）求证：存在双射 Map(X × Y, Z) ∼−→ Map(X,Map(Y, Z))

2



近世代数 (H) 课堂笔记 § 1.2 等价关系

§ 1.2 等价关系

定义 1.2.1（等价关系与等价类）设 X 是集合，定义 X 上的等价关系 R ⊆ X ×X（也记作 R∼），它
满足如下三条性质

(1) 自反性：(x, x) ∈ R, ∀x ∈ X (x
R∼ x)

(2) 对称性：(x, y) ∈ R =⇒ (y, x) ∈ R (x
R∼ y =⇒ y

R∼ x)
(3) 传递性：(x, y), (y, z) ∈ R =⇒ (x, z) ∈ R (x

R∼ y, y R∼ z =⇒ x
R∼ z)

对 ∀a ∈ X，称
[a] = {x ∈ X|x R∼ a}

为 [a] 所在的等价类

例 1.4 最小的等价关系：4 = {(x, x)|x ∈ X} ⊆ X ×X，不难看出 4∼ 就是等号

例 1.5 Z 上模 3 同余关系：R = {(m,n) ∈ Z× Z : 3 | m− n}，实际上

m
R∼ n ⇐⇒ m ≡ n mod 3

Fact 设 X 上有等价关系
R∼，则

(1) 对 ∀b ∈ [a]，有 [b] = [a]，因此称 [a] 中的任一元素为它的代表元

(2) [a] ∩ [a′] 6= ∅ ⇐⇒ [a] = [a′]

Ex 证明上述事实

定义 1.2.2（商集与商映射）设 X 上有等价关系
R∼，定义商集

X/
R∼ def

= {等价类全体} ⊆ P(X)

进而有商映射（它是满射）

πR : X −→ X/
R∼

a 7−→ [a]

定义 1.2.3（完全代表元系）关于等价关系 R∼ 的完全代表元系（简记为完系）是指 S ⊆ X，它满足

∀x ∈ X，存在唯一 s ∈ S, s.t. [s] = [x]

例 1.6 记 R 为 Z 上的模 3 同余关系，则 Z/ R∼ = {[0], [1], [2]} def
= Z3，且 S = {0, 1, 2}, S′ = {−1, 0, 1}

均为完全代表元系

Fact 设 X 上有等价关系
R∼

(1) 若 S ⊆ X 为完系，则存在 S → X/
R∼ 的双射 πR ◦ inc，具体如下

S
inc−→ X

πR−↠ X/
R∼

s 7−→ s 7−→ [s]

3



近世代数 (H) 课堂笔记 § 1.2 等价关系

(2) 此时我们有

X =
⊔
s∈S

[s]

定义 1.2.4（分拆）集合 X 的分拆是指 P = {Xi : i ∈ I} ⊆ P(X)，其中 I 是指标集，满足

(1) Xi 6= ∅, ∀i ∈ I
(2) Xi ∩Xj = ∅, ∀i 6= j

(3) X =
⊔
i∈I

Xi

Fact 存在双射
{X上的等价关系} 1:1←→ {X上的分拆}

R∼ 7−→ X/
R∼

P∼ ←−p P = {Xi : i ∈ I}

其中
P∼ 为等价关系：x P∼ y ⇐⇒ ∃i ∈ I, s.t. x, y ∈ Xi

Fact 任给映射 f : X → Y，它给出了 X 上的等价关系

x
f∼ x′ ⇐⇒ f(x) = f(x′)

其中 ∀x ∈ X 的等价类为 [x] = f−1(f(x))

定义 1.2.5（原像）考虑映射 f : X → Y，对 ∀y ∈ Y，定义原像为

f−1(y) = {x ∈ X : f(x) = y} ⊆ X

评价 f−1(y) 6= ∅ ⇐⇒ y ∈ Im(f)

定理 1.2.1（映射基本定理）设 f : X → Y，考虑
f∼，则 f 诱导双射

f̄ : X/
f∼ −→ Im(f)

[x] 7−→ f(x)

评价 需要验证两点：

(1) f̄ 是否良定义 (Well− defined)？即若 [x] = [x′]，是否有 f(x) = f(x′)

(2) f̄ 是单射？满射？

此外我们有交换图

4



近世代数 (H) 课堂笔记 § 1.2 等价关系

X Y x f(x)

X/
f∼ Im(f) [x] f(x)

f

πf πf

f

f̄

inc

f̄

inc

即 f = inc ◦ f̄ ◦ πf

Ex 假设还存在 h : X/
f∼ → Im(f) 满足 f = inc ◦ h ◦ πf，则 h = f̄

定义 1.2.6（二元运算）对任意非空集合 X，定义其上的二元运算

ψ : X ×X −→ X

(x, y) 7−→ ψ(x, y) ∈ X

称这个二元运算 ψ 满足结合律是指：∀x, y, z ∈ X,ψ(ψ(x, y), z) = ψ(x, ψ(y, z))

评价 有时我们略去 ψ，用一般的乘法表示，记 ψ(x, y) = x · y，则结合律表示为 (x · y) · z = x · (y · z)，即
括号可以随意添加！二元运算满足结合律当且仅当下面的交换图成立

X ×X ×X X ×X

X ×X X

ψ×IdX

IdX×ψ ψ

ψ

5



近世代数 (H) 课堂笔记

第二章 环

§ 2.1 基本概念

定义 2.1.1（环）环是一个非空集合 R 和 R 上两个二元运算（通常表示为 +, ·）组成的代数结构
(R,+, ·)，它满足八条公理

(A1) 加法结合律：∀a, b, c ∈ R, (a+ b) + c = a+ (b+ c)

(A2) 加法交换律：∀a, b ∈ R, a+ b = b+ a

(A3) 有零元：∃0R ∈ R，满足对 ∀a ∈ R, a+ 0R = 0R + a = a

(A4) 有负元：对 ∀a ∈ R, ∃b ∈ R, s.t. a+ b = 0R = b+ a

(M1) 乘法结合律：∀a, b, c ∈ R, (a · b) · c = a · (b · c)
(M2) 有幺元：∃1R ∈ R，满足对 ∀a ∈ R, a · 1R = a = 1R · a
(D1) 左分配律：∀a, b, c ∈ R, (a+ b) · c = a · c+ b · c
(D2) 右分配律：∀a, b, c ∈ R, a · (b+ c) = a · b+ a · c

评价 (1) 本课程只考虑含幺环，即默认含幺

(2) 可将 (R,+, ·) 简记为 R

(3) 两个环 (R,+, ·) 和 (R′,⊕,⊗) 相等当且仅当 R = R′,+ = ⊕, · = ⊗

Fact 零元、负元唯一！

证明 只证明零元唯一，负元唯一性类似：假设还存在一个零元 0′R，则

0′R = 0′R + 0R = 0R + 0′R = 0R

□

Ex 证明 −0R = 0R,−(−a) = a, ∀a ∈ R

例 2.1（环的例子）
(1) 整数环 Z = (Z,+·), 0Z = 0, 1Z = 1

(2) Gauss 整数环 Z[i] = {m+ ni|m,n ∈ Z} ⊆ C
(3) 有理系数一元多项式环 Q[x] = {系数为有理数的多项式}
(4) 模 n 同余类环 Zn = {0, 1, · · · , n− 1}，其中零元为 0，幺元为 1，加法与乘法定义为

a+ b = a+ b, a · b = ab

(5) C 上的全矩阵环 Mn(C) = {n× n阶复方阵全体}，零元为 0n×n，幺元为 In，它是含幺非交换环

Ex 验证模 n 同余类环中加法与乘法的良定性

评价 设 k 是域，k 上的线性空间 V 也有两种二元运算，即加法和数乘，也满足八条公理，但是与环不

同！
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近世代数 (H) 课堂笔记 § 2.1 基本概念

命题 2.1.1（环的基本性质）
(1) ∀a ∈ R,−(−a) = a

(2) 加法消去律：a+ b = a+ c =⇒ b = c

Proof : (−a) + (a+ b) = (−a) + (a+ c) =⇒ [(−a) + a] + b = [(−a) + a] + c =⇒ b = c

(3) 定义减法：a− b def
= a+ (−b)

(4) 定义倍数：∀a ∈ R,n ∈ Z，定义 a 的 n 倍为 na，对 ∀n ∈ Z 有

na =



0R, n = 0
n个︷ ︸︸ ︷

a+ · · ·+ a, n > 0
−n个︷ ︸︸ ︷

(−a) + · · ·+ (−a), n < 0

(5) 引入求和符号
n∑
i=1

ai = a1 + · · ·+ an

Ex 试证明

(1) ∀m,n ∈ Z, a ∈ R，有 (m+ n)a = ma+ na

(2) ∀n ∈ Z, a ∈ R，有 na = (n1R) · a = a · (n1R)，特别地当 n = 0 时有 0R = 0R · a, ∀a ∈ R
(3) ∀a, b ∈ R,n ∈ Z，有 a · (nb) = n(a · b) = (na) · b

Ex 证明广义分配律：对 ∀m,n ≥ 1(
n∑
i=1

ai

)(
m∑
j=1

bj

)
=

n∑
i=1

m∑
j=1

(ai · bj)

命题 2.1.2（零环的等价命题）设 R为含幺环，则以下命题等价 TFAE(The following are equivalent)
(1) 0R = 1R

(2) R = {0R}
(3) R 仅有一个元素

证明 (2) =⇒ (3), (3) =⇒ (1) 都是显然的，下面证明 (1) =⇒ (2)：对 ∀a ∈ R，下证 a = 0R

a = 1R · a
(1)
= 0R · a = 0R

□

评价 在后续课程中，除非特殊说明，我们考虑非零环

例 2.2 二元环 R = {0R, 1R}，我们断言 1R+1R = 0R，因为若 1R+1R = 1R，由加法消去律知 1R = 0R，

但它不是零环，矛盾！二元环的加法、乘法表如下

7
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+ 0R 1R

0R 0R 1R

1R 1R 0R

· 0R 1R

0R 0R 0R

1R 0R 1R

在同构意义下，二元环只有一种，即为 Z2 = {0, 1}

以下我们考虑含幺交换环以下我们考虑含幺交换环以下我们考虑含幺交换环

定义 2.1.2（幂次）对 ∀a ∈ R,n ∈ N，定义 a 的幂次

a0 = 1R, an =

n个︷ ︸︸ ︷
a · a · · · a, ∀n ≥ 1

定理 2.1.1（二项式定理）对 ∀a, b ∈ R, ∀n ∈ N∗，有

(a+ b)n =
n∑
i=0

(
n

i

)
aibn−i

Ex 证明二项式定理

定义 2.1.3（乘法可逆元） ∀a ∈ R 称为乘法可逆元（也称单位 , unit），若 ∃b ∈ R，使得

a · b = 1R = b · a

此时记 b = a−1

Fact 逆元唯一，且根据定义有 (a−1)−1 = a

例 2.3 1−1
R = 1R，在非零环中，0R 不可逆！

Fact 可逆元具有乘法消去律：若 a ∈ R 可逆，且 a · x = a · y 或 x · a = y · a，则 x = y，因此可逆元

具有左/右消去律，可以定义除法：c÷ a = ca−1

评价 若 a 可逆，则对 n ≥ 1，可以定义 a−n
def
= (a−1)n

定义 2.1.4（单位群）定义环 R 的单位群为

U(R)
def
= {a ∈ R|a可逆} ⊂ R

Fact U(R) 有以下性质

8
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(1) R 交换 =⇒ U(R) 是 Abel 群
(2) ±1R ∈ U(R)

(3) a, b ∈ U(R) =⇒ a · b ∈ U(R)

(4) a ∈ U(R) =⇒ a−1 ∈ U(R)

例 2.4 U(Z) = {1,−1}, U(Q) = Q× def
= Q\{0}

例 2.5 U(Zn) = {m| gcd(m,n) = 1}，如 U(Z8) = {1, 3, 5, 7}

定义 2.1.5（整环）称 R 是整环，若 a · b = 0R =⇒ a = 0R 或 b = 0R

评价 若 R 是整环，则 ∀a, b 6= 0R =⇒ ab 6= 0R

例 2.6 (1) Z 是整环
(2) 当 n 为合数时，Zn 不是整环，如在 Z8 中有 2 · 4 = 0，但是 2, 4 6= 0

命题 2.1.3 整环有乘法消去律：∀a 6= 0R，若 a · b = a · c，则 b = c

证明

a · b = a · c =⇒ a · (b− c) = 0R
a 6=0R
=⇒ b− c = 0R =⇒ b = c

□

定义 2.1.6（域）称含幺交换环 R 是域，若 ∀a 6= 0R，均有 a ∈ U(R)

Fact 域一定是整环

证明 设 R 是域，对 ∀a, b ∈ R\{0}，则 a, b ∈ U(R) =⇒ ab ∈ U(R)，故 ab 可逆，ab 6= 0R □

例 2.7 Q 有理数域；C 复数域；Z,Z[i] 是整环，但不是域

命题 2.1.4 设 n ≥ 2，则以下命题等价

(1) Zn 是整环
(2) n 是素数

(3) Zn 是域

证明 (3) =⇒ (1), (1) =⇒ (2) 显然，下面证明 (2) =⇒ (3)：设 n = p 是素数，因为 Zp = {0, 1, · · · , n− 1}，
对 ∀1 ≤ i ≤ p− 1，由于 (i, p) = 1，由 Bezout 等式，存在 a, b ∈ Z, s.t. ai+ bp = 1，因此

ai ≡ 1 mod p =⇒ a · i = 1

因此 i
−1

= a □

评价 因此，我们记 Zp
def
= Fp (Field)

Ex 证明：设 R 是有限环，则 R 是整环 ⇐⇒ R 是域（若 R 为无限环，则改命题不成立，考虑 Z,Z[i]）

9
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定义 2.1.7（子环）设 S ⊆ R，若
(1) 1R ∈ S（与书上不同）
(2) S 对 +,−, · 封闭，即 ∀a, b ∈ S, a+ b, a− b, a · b ∈ S
则称 S 是 R 的子环，注意 S 本身也是环，0S = 0R, 1S = 1R

定义 2.1.8（子域）设 K 是域，子环 S ⊆ K 称为子域，若 ∀0R 6= a ∈ S，有 a−1 ∈ S（即对 +,−, ·,÷
封闭），注意 S 本身也是域

例 2.8 Z
子环

⊆ Q,Q
子域

⊆ R
子域

⊆ C

例 2.9 (1) Z 没有真子环
(2) Q,Fp 没有真子域

证明 只证明 Z 没有真子环，其余类似：设 S ⊆ Z 为子环，则 1 ∈ S =⇒ 0 = 1− 1,−1 = 0− 1 ∈ S，进
而由倍元的公式知 ∀n ∈ Z, n ∈ S，即 Z ⊆ S，故 S = Z □

Ex 分类 Q 的子环

例 2.10 记 Q(i) = {a+ bi|a, b ∈ Q} ⊆ C，试分类 Q(i) 的子域

解 设 S ⊆ Q(i) 是子域，我们断言：S = Q 或 S = Q(i)

Proof Of Claim : 因为 1 ∈ S，同上可知 Q ⊆ S
Case 1. Q = S

Case 2. Q $ S =⇒ ∃a + bi ∈ S, a, b ∈ Q, b 6= 0，进而 bi ∈ S =⇒ i = bi · 1
b
∈ S，因此 ∀a, b ∈

Q, a+ bi ∈ S，即 S = Q(i) □

§ 2.2 商环与理想

定义 2.2.1（环同态）设 R = (R,+, ·), S = (S,⊕,⊗) 为两个含幺交换环，定义映射 θ : R→ S，称 θ

为环同态 (Ring homomorphism)，若

(1) 保运算：∀a, b ∈ R, θ(a+ b) = θ(a)⊕ θ(b), θ(a · b) = θ(a)⊗ θ(b)
(2) θ(1R) = 1S

若 θ 还是双射，则称 θ 为环同构，记为 θ : R
∼−→ S

命题 2.2.1（环同态的性质）设 θ : R −→ S 是环同态，则

(1) θ(0R) = 0S

(2) θ(a− b) = θ(a)− θ(b)
(3) θ(am) = θ(a)m

评价 可以理解环同态保代数式：如在 R 中有 a3b+ 4ab = 5c，则作用 θ : R→ S 可得

θ3(a)θ(b) + 4θ(a)θ(b) = 5θ(c) in S

10
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例 2.11 证明不存在环同态 Q θ−→ Z8

证明 假设存在，则 θ(1) = 1 =⇒ θ(8) = 8 = 0，因此

1 = θ(1) = θ(8)θ(
1

8
) = 0 · θ(1

8
) = 0

矛盾！ □

Ex 证明不存在环同态 Z8
θ−→ Q

引理 2.2.1 设 θ : R→ S 为环同态，若 a ∈ U(R)，则 θ(a) ∈ U(S)，且 θ(a)−1 = θ(a−1)

证明 若 a ∈ U(R)，则 1S = θ(1R) = θ(aa−1) = θ(a)θ(a−1) □

评价 由上述引理知，给定环同态 θ : R→ S，可以得到单位群间的同态 θ|U(R) : U(R)→ U(S)

Fact 若 θ : R→ S 为环同构，则 θ−1 : S → R 也为环同构

证明 首先由 θ 是双射知，θ−1 也为双射，下面证明 θ−1 保运算，因为

θ
(
θ−1(x+ y)

)
= x+ y = θ

(
θ−1(x)

)
+ θ
(
θ−1(y)

)
= θ(θ−1(x) + θ−1(y))

由 θ 是单射知 θ−1(x+ y) = θ−1(x) + θ−1(y)，乘法类似证明 □

引理 2.2.2 若 θ : R→ S, ϕ : S → T 均为环同态，则 ϕ ◦ θ : R→ T 也是环同态

定义 2.2.2（环的自同构群）称 Aut(R) = {θ|θ : R→ R是环的自同构} 为环 R 的自同构群，乘法即

为映射的复合

例 2.12 Aut(Z) = {IdZ},Aut(Q) = {IdQ}

证明 只证明 Aut(Z) = {IdZ}，另一式同理：设 θ ∈ Aut(Z)，则 θ(1) = 1，进而 ∀n ∈ Z, θ(n) = n，故

θ = IdZ □

例 2.13 证明 Aut(Z[i]) = {IdZ[i], τ}，其中 τ : m+ ni 7→ m− ni，即为求共轭映射

证明 设 θ ∈ Aut(Z)，同上可知 θ|Z = IdZ，接下来考虑 θ(i)，因为在 Z[i] 上有 i2 + 1 = 0，所以

θ(i)2 = −1 =⇒ θ(i) = ±i
Case 1. θ(i) = i =⇒ θ = IdZ[i]

Case 2. θ(i) = −i =⇒ θ = τ

Ex 完善上述过程，并证明 Aut(Q[i]) = {Id, τ}

Ex 设 θ : R→ S 是环同构，证明

(1) a ∈ U(R) ⇐⇒ θ(a) ∈ U(S)

(2) 有群同构 U(R)
∼−→ θ(S)

11
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(3) R 是整环 ⇐⇒ S 是整环

(4) 有群同构 Aut(R) ∼−→ Aut(S)

例 2.14（特征同态）对任意环 R，存在唯一环同态

ϕ : Z −→ R

n 7−→ n1R

称为特征同态

定义 2.2.3（同态的核）设 θ : R→ S 为环同态，定义环同态 θ 的核为

Ker(θ) = {r ∈ R|θ(r) = 0S} = θ−1(0S) ⊆ R

评价 Ker(θ) 不是 R 的子环，因为 θ(1R) = 1S 6= 0S，故 1R /∈ Ker(θ)

Fact (1) Ker(θ) 对 +,−, · 封闭
(2) 1R /∈ Ker(θ)
(3) ∀a ∈ R, r ∈ Ker(θ)，有 ar ∈ Ker(θ)，这是因为

θ(ar) = θ(a)θ(r) = θ(a) · 0S = 0S

即 Ker(θ) 对“倍元”封闭

定义 2.2.4（理想） ∅ 6= I ⊆ R 称为环 R 的理想，若

(1) ∀a, b ∈ I, a+ b ∈ I
(2) ∀a ∈ I, r ∈ R, a · r ∈ I
记作 I ◁R

评价 r ∈ I =⇒ −r = (−1R) · r ∈ I，即 I 对减法封闭

例 2.15（平凡理想） {0R}◁R, R◁R

Fact 设 I ◁R，则 I 6= R ⇐⇒ 1R /∈ I（实际上把 1R 改为任意 a ∈ U(R) 均对）

证明 (⇐=) : 显然

(=⇒) : 反证，若 1R ∈ I，则 ∀a ∈ R, a = a · 1R ∈ I，故 R = I，矛盾！ □

定义 2.2.5（主理想）对 ∀a ∈ R，称

(a) = aR = {ra|r ∈ R}

为 a 生成的主理想，并称 a 为 (a) 的生成元

12
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引理 2.2.3 R 是域 ⇐⇒ R 仅有平凡理想

证明 (=⇒) : 设 R 是域，{0R} $ I ◁R，取 0 6= a ∈ I, ∀r ∈ R，有

r = (ra−1)a ∈ I =⇒ I = R

(⇐=) : 对 ∀0 6= a ∈ R，则 {0R} 6= (a)，而 R 仅有平凡理想，故 (a) = R，所以 ∃b ∈ R, s.t. ba = 1R，

即 a 可逆，由 a 的任意性知 R 是域 □

例 2.16 分类 Z 的理想

解 首先有平凡理想 {0} = 0Z,Z
Claim：Claim：Claim：∀{0R} $ I ◁ Z, ∃!n > 0, s.t. I = nZ
Proof Of Claim : 设 {0R} $ I，则 ∃!0 6= n0 ∈ I, s.t. |n0| 最小，不妨设 n0 > 0（否则由理想对倍元封

闭，考虑 −n0），对于 ∀m ∈ Z，由带余除法，∃q ∈ Z, 0 ≤ r ≤ n0−1, s.t. m = n0q+r，则 r = m−n0q ∈ I，
由 n0 的最小性知 r = 0，因此 m = n0q ∈ n0Z =⇒ I ⊆ n0Z，且显然有 n0Z ⊆ I，故 I = n0Z
唯一性由 n0 的最小性保证，综上 Z 的所有理想为 {nZ|n ∈ N} □

Fact 存在双射
Z≥0

1:1←→ {Z的理想}

n 7−→ nZ

回忆映射基本定理1.2.1

X Y x f(x)

X/
f∼ Im(f) [x] f(x)

f

πf πf

f

f̄

inc

f̄

inc

假设此时 X = R, Y = S, θ : R→ S 是环同态，则 ∀a, b ∈ R，有

a
θ∼ b ⇐⇒ θ(a) = θ(b) ⇐⇒ θ(b− a) = 0S ⇐⇒ b− a ∈ Ker(θ) ⇐⇒ b ∈ a+ Ker(θ)

如何理解 R/
θ∼ θ̄−→ Im(θ) 中 R/

θ∼ 的结构？实际上 R/
θ∼ = {a+ Ker(θ)|a ∈ R} = {核的平移}

定义 2.2.6（商环）设 I ◁R，商环 R/I 的定义如下

Step 1. 引入 R 上的关系：模 I 同余

∀a, b ∈ R, a ≡ b mod I ⇐⇒ a− b ∈ I

则模 I 同余是 R 上的一个等价关系

(1) 自反性：a− a = 0R ∈ I =⇒ a ≡ a mod I

(2) 对称性：若 a ≡ b mod I，则 a− b ∈ I =⇒ b− a ∈ I =⇒ b ≡ a mod I

13
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(3) 传递性：若 a ≡ b mod I, b ≡ c mod I，则 a−b, b−c ∈ I =⇒ a−c = (a−b)+(b−c) ∈ I =⇒ a ≡ c
mod I

且 ∀a ∈ R，a 的模 I 同余类为

a = {b ∈ R, a− b ∈ I} def
= a+ I

Step 2. 定义商集 R/I
def
= R/ ≡ = {a|a ∈ R} ⊆ P(R)，定义 R/I 上的运算

(1) 加法：a+ b = a+ b

(2) 乘法：a · b = a · b
则 (R/I,+, ·) 是一个含幺交换环，其中 0R/I = 0 = 0 + I = I,−a = −a

Ex 验证商集 R/I 中加法、乘法的良定性

Fact（典范环同态）
can : R −↠ R/I

a 7−→ a

其中 Ker(can) = {a ∈ R|a = 0} = I

例 2.17 设 n ≥ 2，我们有 nZ◁ Z，称 Z/nZ def
= Zn = {0, 1, · · · , n− 1} 为模 n 同余类环

命题 2.2.2（典范环同态的泛性质）设 I◁R, can : R −↠ R/I, θ : R→ S 为环同态，满足 I ⊆ Ker(θ)，
则存在唯一环同态 R/I

θ′−→ S, s.t. θ = θ′ ◦ can，用交换图表示为

R S

R/I

θ

can θ

证明 至多唯一性显然，下证存在性，构造

θ′ : R/I −→ S

a 7−→ θ(a)

则 θ′ 是良定的：假设 a = b，则 a− b ∈ I ⊆ Ker(θ) =⇒ 0S = θ(a− b) =⇒ θ(a) = θ(b)

自行验证 θ′ 为环同态 □

定理 2.2.1（环同态基本定理）设 θ : R→ S 是环同态，则存在唯一环同构

θ : R/Ker(θ) −→ Im(θ)

a 7−→ θ(a)

14
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即下面的图交换

R S

R/Ker(θ) Im(θ)

θ

can

θ

inc

证明 由映射基本定理1.2.1知，θ 是双射且唯一，自行验证 θ 为环同态 □

命题 2.2.3 设 θ : R→ S 为环同态，则

(1) θ 是单同态 ⇐⇒ Ker(θ) = {0R}，此时有环同构

R
∼−→ Im(θ)

θ 7−→ θ(a)

因此我们可以将 R 视为 S 的子环（实际上 θ(R) 才是 S 的子环），记 R
θ

↪−→ S 为环的嵌入

(2) θ 是满同态 ⇐⇒ Im(θ) = S，此时有环同构 R/Ker(θ) ' S，故我们可以将 S 视为 R 的商环

例 2.18（特征同态）
ϕ : Z −→ R

n 7−→ n1R

则 ∃n0 ∈ N, s.t. Ker(ϕ) = n0Z，我们记 n0 = Char(R) 为环 R 的特征，特别地

(1) 当 n = 0 时，R 为无限环，可以验证 ϕ 为单射，故有环嵌入 Z ↪−→ R

(2) 当 n ≥ 2 时，有环嵌入 Z/nZ ↪−→ R，具体为

Z/nZ ↪−→ R

m 7−→ m1R

Fact 设 R 是整环，则 Char(R) = 0 或素数

例 2.19 设 I ⊆ J, I ◁R, J ◁R，则我们有满同态

θ : R/I −↠ R/J

a+ I 7−→ a+ J

其中 Ker(θ) = {(a+ I) ∈ R/I|(a+ J) = 0R/J} = {(a+ I) ∈ R/I|a ∈ J} def
= J/I，因此 J/I ◁R/I，由环

同态基本定理，存在环同构

(R/I)/(J/I)
∼−→ R/J

(a+ I) + J/I 7−→ a+ J

15
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定理 2.2.2（对应定理）给定 I ◁R，则存在双射

{J ◁R|I ⊆ J ⊆ R} 1:1←→ R/I的理想

J 7−→ J/I = {a = a+ I|a ∈ J}

{a ∈ R, a ∈ U} ←−p U ◁R/I

Ex 证明对应定理

Ex 分类 Z/nZ 的理想（提示：利用对应定理）

Ex 设 R 是环，S ⊆ R 为子环，I ◁R，证明

(1) S + I = {a+ x|a ∈ S, x ∈ I} 为 R 的子环

(2) (S ∩ I)◁ S

(3) 有环同构 S/(S ∩ I) ∼−→ (S + I)/I

Ex（子环版本的对应定理）设 I ◁R，则存在双射

{S ⊆ R|I ⊆ S} −→ {R/I的子环}

S 7−→ S/I

§ 2.3 分式域与商域

定义 2.3.1（分式域）设 R 是整环，R× = R\{0}，考察 R × R× = {(a, x)|a ∈ R, x ∈ R×}，定义
R×R× 上的等价关系

(a, x) ' (b, y) ⇐⇒ ay = bx in R

Claim：Claim：Claim：' 是等价关系
Proof Of Claim : 自反性、对称性显然，下证传递性：设 (a, x) ' (b, y), (b, y) ' (c, z)，则

(az)y = (bx)z = (cx)y =⇒ (az − cx)y = 0R
y 6=0R
=⇒ az = cx

所以 (a, x) ' (c, z)，我们称 ' 对应的等价类为分式，记为

a

x
= {(b, y) ∈ R×R×|(b, x) ' (a, x)}

记分式全体 (R×R×)/ ' = Frac(R)，在 Frac(R) 上自然定义加法、乘法 a
x
+ b

y
= ay+bx

xy

a
x
· b
y
= ab

xy

由下面的练习知 (Frac(R),+, ·) 是域，称为 R 的分式域，其中 0Frac(R) =
0R
1R
, 1Frac(R) =

1R
1R
,− a

x
= −a

x

Ex 验证分式域中加法与乘法的良定性

16



近世代数 (H) 课堂笔记 § 2.3 分式域与商域

Fact（典范单同态）
canR : R ↪−→ Frac(R)

a 7−→ a

1R

且我们有同构 R ' Im(canR)，因此可以将 R 与 Frac(R) 的子环等同起来

Ex canR 是同构 ⇐⇒ R 是域

Fact 设 K,L 是域，且若有同态 θ : K → L，则 θ 是单射，即域同态一定是单同态

命题 2.3.1（canR : R ↪−→ Frac(R) 的泛性质）设 K 是域，则对任意单同态 φ : R ↪−→ K, ∃!φ̃ :

Frac(R) ↪−→ K，满足 φ̃ ◦ canR = φ，即下面的图交换

R K

Frac(R)

ϕ

canR ϕ̃

特别地，φ̃ 是同构 ⇐⇒ φ̃ 是满射 ⇐⇒ ∀w ∈ K 都可表示为 w = φ(a)φ(x)−1, a ∈ R, x ∈ R×

证明 至多唯一性：对 ∀a ∈ R, x ∈ R×，因为 φ̃ ◦ canR = φ，所以 φ̃( a
1R

) = φ(a), φ̃( 1R
x
) = φ̃(( x

1R
)−1) =

φ̃( x
1R

)−1 = φ(x)−1，因此

∀a
x
∈ Frac(R), φ̃(

a

x
) = φ̃(

a

1R
· 1R
x
) = φ(a)φ(x)−1

即 φ̃ 的像由 φ 唯一决定

存在性：构造
φ̃ : Frac(R) −→ K

a

x
7−→ φ(a)φ(x)−1

以上构造是合理的，因为 x 6= 0R
单同态
=⇒ φ(x) 6= 0R，且 φ̃ 是良定的，若 a

x
= a′

x′ ⇐⇒ ax′ = a′x，则

φ(a)φ(x′) = φ(x)φ(a′) =⇒ φ(a)φ(x)−1 = φ(a′)φ(x′)−1

容易验证 φ̃ 是域同态，且域同态一定是单同态 □

例 2.20 Frac(Z) = Q

Ex 证明 Frac(Z[i]) = Q(i)
def
= {a+ bi|a, b ∈ Q}

例 2.21 设 F 是域，考虑特征同态 ϕ : Z ↪−→ F, n 7→ n1F

Case 1. Char(F ) = 0，由泛性质2.3.1知

Z F

Q
canZ

φ

φ̃

17
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存在唯一的域嵌入
ϕ̃ : Q ↪−→ F

m

n
7−→ (m1F )(n1F )

−1

此时 F 自然成为 Q-线性空间，数乘定义为

λ · v = ϕ̃(λ)v, λ ∈ Q, v ∈ F

Case 2. Char(F ) = p，存在唯一域嵌入

ϕ̃ : Fp ↪−→ F

n 7−→ n1F

则 F 成为 Fp-线性空间，数乘定义为

λ · v = ϕ̃(λ)v, λ ∈ Fp, v ∈ F

Fact 设 F 为有限域，则存在素数 p 以及正整数 n，使得 |F | = pn

证明 因为 F 是域，所以存在素数 p 使得 Char(F ) = p，因此有域嵌入 Fp ↪−→ F，进而 F 成为 Fp-线性
空间，由线代知识，存在正整数 n 和线性同构

F ' (Fp)d = Fp × · · · × Fp

□

定义 2.3.2（素理想）称真理想 p◁R 为素理想，若 ∀a · b ∈ p =⇒ a ∈ p 或 b ∈ p

评价 素理想的等价命题：若 ∀a, b /∈ p，则 a · b /∈ p

例 2.22 在 Z 中，pZ◁ Z 是素理想 ⇐⇒ p 是素数

证明 (=⇒) :证明逆否命题，假设 p不是素数，则 ∃1 < m,n < p, s.t. p = mn，则 m,n /∈ pZ，但 mn ∈ pZ，
与 pZ 是素理想矛盾！

(⇐=) : 若 mn ∈ pZ，则 p | mn =⇒ p | m, p | n =⇒ m ∈ pZ 或 n ∈ pZ，故 pZ 是素理想 □

例 2.23 证明：{0R} 是素理想 ⇐⇒ R 是整环

证明 (=⇒) 假设 ab = 0R，因为 {0R} 是素理想，所以 ab ∈ {0R} =⇒ a ∈ {0R} 或 b ∈ {0R}，即 a = 0R

或 b = 0R，进而 ab = 0R

(⇐=) : 留作练习 □

定义 2.3.3（素谱）称
Spec(R) = {R的全体素理想}

为环 R 的素谱

18
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例 2.24 Spec(Z) = {(0), (2), (3), (5), (7), · · · }

定义 2.3.4（极大理想）真理想 m◁R 称为极大理想，若 m ⊆ I ⊆ R，则 I = m 或 I = R

评价 注意素理想和极大理想的前提都是真理想

命题 2.3.2 设真理想 m◁R，则 m 是极大理想 ⇐⇒ R/m 是域

证明 一个 non-trivial 的证法：由对应定理知存在一一对应

{I|m ⊆ I, I ◁R} 1:1←→ {R/m的理想}

而 LHS = {m,R}，对应地 m 7→ m/m = {0}, R 7→ R/m，故 R/m 只有平凡理想，则 R/m 是域 □

证明（另证）一个比较“土”的证法

(=⇒) : ∀0 6= a ∈ R/m，若能求出 a−1，则 R/m 为域，考虑

m+ (a) = {x+ ar|x ∈ m, r ∈ R}◁R

则 m ⊆ m+(a)，由 m是极大理想知 m+(a) = R，则 ∃x0 ∈ m, r0 ∈ R, s.t. x0+ar0 = 1R，所以 ar0 = 1R，

故 a−1 = r0

(⇐=) : 留作练习 □

定义 2.3.5（极大谱）称

Max(R) = {R的全体极大理想} ⊆ Spec(R)

为环 R 的极大谱

Fact 设 R 是含幺交换环，则 Max(R) 6= ∅，这点由 Zorn 引理保证，承认即可，不要求掌握

例 2.25 Max(Z) = {(2), (3), (5), (7), · · · } =⇒ Spec(Z) = {(0)} tMax(Z)，且 Z 的极大理想分别对应了
商域 F2,F3,F5,F7, · · ·

定义 2.3.6（环中的整除）设 R 是整环，a 6= 0R，约定 a | b ⇐⇒ b ∈ (a) ⇐⇒ ∃r ∈ R, s.t. b = ar

定义 2.3.7（素元）设 0R 6= a ∈ R，若 (a) ∈ Spec(R)，即 (a) 为素理想，则称 a 为素元

评价 (1) 素元不可逆（否则 (a) = R）

(2) 设 a 非零非单位，则 a 是素元 ⇐⇒ a | xy 能推出 a | x 或 a | y

例 2.26 Z 中的素元为 {±2,±3,±5,±7, · · · }
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定义 2.3.8（不可约元）非零非单位元素 a ∈ R 称为不可约元，若 a = bc，则 b ∈ U(R) 或 c ∈ U(R)，

即 a 只有平凡分解 a = (au−1)u, u ∈ U(R)

Fact 整环中素元总是不可约元

证明 设 a 是素元，则 a 6= 0R, a /∈ U(R)，假设 a = bc，则 a | b · c，由 a 是素元知 a | b 或 a | c，不妨设
a | b，则 ∃x ∈ R, s.t. b = ax，所以 a = axc

整环
=⇒ xc = 1R，故 c = U(R)，所以 a 只有平凡分解，a 是不

可约元 □

例 2.27 Z 中不可约元和素元等价

Ex 考虑 Z[
√
−3] = {m+ n

√
−3|m,n ∈ Z}，证明

(1) 2 ∈ Z[
√
−3] 不可约

(2) 2 不是素元

§ 2.4 一元多项式环

定义 2.4.1（多项式）设 R 是整环，x 是字母，R 上关于 x 的（形式）多项式如下

f(x) =
n∑
i=0

aix
i = anx

n + an−1x
n−1 + · · ·+ a1x+ a0

其中 ai ∈ R, ∀i，anxn 称为 f(x) 的首项，an 为首项系数，a0 为 f(x) 的常数项，并记 deg(f(x)) = n

为 f(x) 的次数；两个多项式相等当且仅当它们的对应系数均相等

评价 我们约定 x0 = 1R, 1Rx
i = xi,−1Rxi = −xi；0Rx

i 可以略去

例 2.28 零多项式 f(x) = 0R，我们不规定零多项式的次数；常值多项式 f(x) = a0，若 a0 6= 0，则

deg(f(x)) = 0；首一多项式 f(x) 的最高次系数 an = 1R

命题 2.4.1 记 R 上的多项式全体为

R[x] = {f(x)|f(x)的系数ai ∈ R, ∀i}

在 R[x] 上定义加法与乘法如下：若 f(x) =
n∑
i=1

aix
i, g(x) =

m∑
j=1

bjx
j，则


f(x) + g(x) =

max{m,n}∑
l=0

(al + bl)x
l

f(x)g(x) =
m+n∑
l=0

clx
l, cl =

l∑
i=0

aibl−i

则 (R[x],+, ·) 自然成环，称为 R 上的一元多项式环

评价 上述定义的加法与乘法中，若下标超出，则规定为零，比如 f(x) = · · ·+0Rx
n+1+anx

n+· · ·+a1x+a0
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例 2.29（典范环嵌入）
R ↪−→ R[x]

a 7−→ a

其中 a ∈ R[x] 是常值多项式 f(x) = a，因此我们可以将 R 视为 R[x] 的子环

命题 2.4.2 若 R 是整环，则 R[x] 是整环

证明 若 f(x) = anx
n + · · · + a1x + a0, g(x) = bmx

m + · · · + b1x + b0, an, bm 6= 0，则 f(x)g(x) =

anbmx
m+n + · · · 6= 0，所以 R[x] 是整环 □

由上述命题的证明过程，我们可以得到

命题 2.4.3 设 R 是整环，f(x), g(x) 6= 0R，则

deg(f(x)g(x)) = deg(f(x)) + deg(g(x))

命题 2.4.4（多项式环的泛性质）设 R 是环，ψ : R → S 是环同态，对 ∀s ∈ S，存在唯一环同态
ψ̃ : R[x]→ S 满足

(1) ψ̃|R = ψ

(2) ψ̃(x) = s

证明 至多唯一性：因为 ψ̃(x) = s，所以 ψ̃(xi) = si, ∀i ∈ N，则

ψ̃(anx
n + · · ·+ a1x+ a0) = ψ(an)s

n + · · ·+ ψ(a1)s+ ψ(a0)

即 ∀f(x) ∈ R[x] 在 ψ̃ 的像由 ψ 和 s 决定

存在性：验证上述的 ψ̃ 为环同态，留作练习 □

例 2.30（赋值同态）考虑 IdR : R→ R，任给 a ∈ R，由泛性质2.4.4知，存在唯一环同态

eva : R[x] −→ R

x 7−→ a

∀r −→ r

称为 a 处的赋值同态，设 f(x) = anx
n + · · ·+ a1x+ a0，则

eva(f(x)) = ana
n + · · ·+ a1a+ a0

def
= f(a)

称 f(a) 为 f(x) 在 x = a 处的取值，f(a) ∈ R

评价 f(a) 是一个“危险”的记号！
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命题 2.4.5（余数定理）对 ∀f(x) ∈ R[x], a ∈ R，则 ∃q(x) ∈ R[x]，使得

f(x) = q(x)(x− a) + f(a)

证明 因式分解
f(x)− f(a) = (anx

n + · · ·+ a1x+ a0)− (ana
n + · · ·+ a1a+ a0)

= (x− a)q(x)

□

Ex 证明 Ker(eva) = (x− a)，其中 (x− a) 表示由 f(x) = x− a 生成的理想

Ex 设 X 是集合，R 是含幺交换环，考虑 Map(X,R) = {θ : X → R映射}，定义 Map(X,R) 上的加
法、乘法如下：对 ∀δ, θ ∈ Map(X,R)

θ + δ : X −→ R

x 7−→ θ(x) + δ(x)

θ · δ : X −→ R

x 7−→ θ(x) · δ(x)

证明 (Map(X,R),+, ·) 是含幺交换环

Fact 对 ∀g(x) ∈ R[x]，它决定了一个多项式函数

g : R −→ R

a 7−→ g(a)

其中 g(a) = eva(g(x))，因此 g ∈ Map(R,R)

Ex 考虑映射

ev : R[x] −→ Map(R,R)

g(x) 7−→多项式函数g

证明 ev 是环同态

Ex 在上一个练习中，取 R = F2，证明

(1) ev 是满射
(2) Ker(ev) = (x2 + x)

(3) Map(F2,F2) 不是整环

以下考虑 k 是域，对 ∀f(x) = anx
n + · · ·+ a1x+ a0 ∈ k[x], an 6= 0，由于域上非零元均可逆，故有

f(x) = anx
n + · · ·+ a1x+ a0 = an(x

n + a−1
n an−1x

n−1 + · · ·+ a−1
n a1x+ a−1

n a0) = anf̃(x)

此时 f, f̃ 生成的主理想是相同的，即 (f(x)) = (f̃(x))，因此我们可以将 f(x) 首一化，且首一化的过程

中并未损失任何信息，所以接下来我们可以不妨假设 f(x) 是首一多项式

22



近世代数 (H) 课堂笔记 § 2.4 一元多项式环

Key Fact（k[x] 中有带余除法）设 f(x) ∈ k[x], 0 6= g(x) ∈ k[x]，用 g(x) 除 f(x) 可得唯一的多项

式 q(x), r(x) ∈ k[x]，满足
f(x) = q(x)g(x) + r(x)

且 r(x) = 0 或 deg(r(x)) < deg(g(x))

证明（带余除法的唯一性）假设 f(x) = q(x)g(x) + r(x) = q′(x)g(x) + r′(x)，则

[q(x)− q′(x)]g(x) = r′(x)− r(x)

比较次数知 r′(x) = r(x), q′(x) = q(x) □

例 2.31 取 k = F2, f(x) = x4 + x3 + x2 + x+ 1, g(x) = x2 + 1，则

f(x) = (x2 + x)g(x) + 1

其中 q(x) = x2 + x, r(x) = 1，具体可用长除法求解，我打不出来

评价 g(x) | f(x) ⇐⇒ r(x) = 0k

评价 取 g(x) = x− a 即为余数定理2.4.5，进而 (x− a) | f(x) ⇐⇒ f(a) = 0k

定义 2.4.2（根集）定义 f(x) 在域 k 上的根集为

Rootk(f) = {a ∈ k|f(a) = 0k}

定义 2.4.3（主理想整环,PID）整环 R 称为 PID (principal ideal domain)，若 ∀I ◁R 均为主理想，

即 ∃a ∈ R, s.t. I = (a)

评价 因为域只有零理想和本身两个理想，它们可以表示为 (0), (1)，所以域均为主理想整环

定理 2.4.1 Z, k[x] 都是主理想整环

证明 下证 k[x] 是主理想整环，Z 完全类似！
设 {0} 6= I ◁ k[x]，取 h(x) ∈ I, s.t. deg(h(x)) 最小，我们断言：(h(x)) = I

Proof Of Claim : 一方面由理想的性质显然有 (h(x)) ⊆ I，另一方面，对 ∀f(x) ∈ I，由带余除法知

f(x) = q(x)h(x) + r(x), q(x), r(x) ∈ k[x], deg(r(x)) < deg(h(x))

但是 r(x) = f(x)−q(x)h(x) ∈ I，与 h(x)次数的最小性矛盾！所以 r(x) = 0k，即 f(x) = q(x)h(x) ∈ (h(x))

□
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定义 2.4.4（最大公因子）设 R 是整环，a, b 6= 0R，定义 a, b 的最大公因子 gcd(a, b) 记为= d 满足

(1) d | a, d | b
(2) ∀d′ | a, d′ | b，有 d′ | d

评价 (1) gcd(a, b) 不一定存在
(2) 若 gcd(a, b) 存在，则在相伴意义下唯一

定义 2.4.5（相伴）
a, b ∈ R相伴 ⇐⇒ ∃u ∈ U(R), s.t. a = ub

⇐⇒ (a) = (b)

⇐⇒ a | b 且 b | a

Fact 若 R 是 PID，则对任意非零元 a, b ∈ R, gcd(a, b) 存在，且有 Bezout 等式

证明 因为 (a)+(b) 仍为 R 的理想，由 R 是 PID 知，∃d ∈ R, s.t. (d) = (a)+(b)，我们断言 d = gcd(a, b)
Proof Of Claim :因为 a ∈ (a) ⊆ (d) =⇒ d | a，同理有 d | b，且若 d′ | a, d′ | b，则 (a) ⊆ (d′), (b) ⊆ (d′)，

故有

d ∈ (d) = (a) + (b) ⊆ (d′) =⇒ d′ | d

由 (d) = (a) + (b) 知，∃u, v ∈ R, s.t. d = au+ bv，即为 Bezout 等式 □

评价 a | b ⇐⇒ (b) ⊆ (a)，即有一一对应：整除
1:1←→ 主理想包含

Ex 设 R = Z[
√
−3], a = 4, b = (1−

√
−3)2，则 gcd(a, b) 是否存在？

Fact 设 R 是 PID，则 R 不可约元与素元等价

证明 首先整环中素元一定是不可约元，下面证明 PID 中不可约元也是素元：设 a 6= 0 不可约、非单

位，设 a | bc, a - b，则 gcd(a, b) = 1，由 Bezout 等式，∃u, v ∈ R, s.t. 1 = au + bv，两边同乘 c 得

c = acu+ bcv = a(cu+ v)，故 a | c，则 a 是素元 □

命题 2.4.6 设 R 是非域的 PID，则

Spec(R) = {(0)} tMax(R)

证明 取 {0} 6= p ∈ Spec(R)，则 ∃a ∈ R, s.t. p = (a)，且 a 是素元，假设 p ⊆ I $ R，由 R 是 PID 知，
∃b ∈ R, s.t. I = (b)，进而 (a) ⊆ (b) =⇒ b | a，由 b 非单位（否则 (b) = R）知，a, b 相伴，故 (b) = (a)，

则 p = (a) 是极大理想 □
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定义 2.4.6（最大公因式）设 k[x] 是域上的一元多项式环，我们定义 ∀f(x), g(x) ∈ k[x] 的最大公因
式 gcd(f, g) = h(x)，它满足h(x) | f(x), h(x) | g(x)若a(x) | f(x), a(x) | g(x)，则a(x) | h(x)

我们额外规定 h(x)首一首一首一

评价 我们可以用辗转相除法求 gcd(f(x), g(x))：若 f(x) = q(x)g(x) + r(x)，则

gcd(f(x), g(x)) = gcd(g(x), r(x))

对 q(x), r(x) 继续以上操作直到 r(x) = 0

定义 2.4.7（不可约多项式） k 上的不可约多项式指的是 k[x] 中的不可约元（或素元）

例 2.32 (1) 在 C[x] 中，不可约多项式均为一次多项式 x− a, a ∈ C
(2) x2 + 1 ∈ R[x] 不可约
(3) x2 + x+ 1 ∈ F2[x] 不可约，x2 + 1 = (x+ 1)2 ∈ F2[x] 可约

评价 由命题2.4.6知
Spec(k[x]) = {(0)} tMax(k[x])

推论 2.4.1 存在一一对应

k上的首一不可约多项式
1:1←→ Max(k[x])

f(x) 7−→ (f(x))

特别地有 k ↪−→ Max(k[x]), λ 7−→ x− λ

定义 2.4.8（域扩张）狭义域扩张：若 k 是 K 的子域，则称 K 是域 k 的扩张，记作 K/k

广义域扩张：若存在域同态（一定是单同态）θ : k ↪−→ K，则称域 K 是域 k 的扩张，记作 K/k

评价 广义域扩张中，记 Im(θ) = θ(k)，则我们有域同构 k
∼−→ θ(k)，我们将 k 与 θ(k) 等同，θ(k) 是 K

的子域；记号 K/k 是危险的记号，它隐藏了 θ 的信息，真事隐真事隐真事隐

Fact 对任意域扩张 θ : k ↪−→ K，K 自然成为 k-线性空间，其中数乘定义为

λ · v = θ(λ) · v, λ ∈ k,v ∈ K

定义 2.4.9（域扩张的维数）设有域扩张 θ : k ↪−→ K，定义域扩张 K/k 的维数为 K 做为 k-线性空
间的维数，记作 dimkK 或 [K : k]
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评价 设有域扩张 θ : k ↪−→ K，它诱导了多项式环同态

θ̃ : k[x] −→ K[x]

f(x) 7−→ θ̃(f(x))

其中若 f(x) = anx
n + · · ·+ a1x+ a0，则 θ̃(f(x)) = θ(an)x

n + · · ·+ θ(a1)x+ θ(a0)，我们有

(1) θ(Rootk(f)) ⊆ RootK(θ̃(f))
(2) f(x) 不可约 6⇒ θ̃(f(x)) 不可约

Ex (1) 设 k
子域

⊆ K, f(x), g(x) ∈ k[x] ⊆ K[x]，证明 gcdk[x](f, g) = gcdK[x](f, g)

(2) 设有域同态 θ : k ↪−→ K，将 (1) 推广到一般情况

Kronecker 添根构造
设 f(x) ∈ k[x] 首一不可约，且 deg(f(x)) ≥ 2，则由命题2.3.2知，K = k[x]/(f(x)) 是域，对于

∀g(x) ∈ k[x], g(x) = g(x) + (f(x)) ∈ K，特别地，若 g(x) = λ, λ ∈ k，则 λ = λ+ (f(x))，因此有域

扩张 π ◦ can : k ↪−→ K，其中 can 为典范单同态，π 为商映射

k
can
↪−→ k[x]

π
−↠ K = k[x]/(f(x))

λ 7−→ λ 7−→ λ = λ+ (f(x))

为方便表示，我们仍然记 λ = λ，定义 x = u，则 K 为 k 线性空间，数乘定义为

λ · g(x) = λg(x)

为什么称为添根构造？因为当 n ≥ 2 时，若 f(x) 不可约，则 Rootk(f) = ∅，但是在扩域
K = k[x]/(f(x)) 中

0 = f(x) = xn + an−1xn−1 + · · ·+ a1x+ a0 = un + an−1u
n−1 + · · ·+ a1u+ a0

即 u = x ∈ RootK(f)，这样我们就人为地给 f 添加了一个根！

Key Fact K 有一组 k-基 {1, u, · · · , un−1}，故 dimkK = n

证明 对 ∀g(x) = k，在 k[x]中，对 g(x)作带余除法 g(x) = q(x)f(x)+r(x), deg(r(x)) < deg(f(x)) = n，

设 r(x) = cdx
d + · · ·+ c1x+ c0, d < n，则

g(x) = r(x) = cd · xd + · · ·+ c1 · x+ c0 = cdu
d + · · ·+ c1u+ c0

因此 ∀g(x) ∈ K 均可被 {1, u, · · · , un−1} 表示，下证它们线性无关，设 ∃λ0, · · · , λn−1 ∈ k，使得

0 = λn−1u
n−1 + · · ·+ λ1u+ λ0 =⇒ 0 = λn−1xn−1 + · · ·+ λ1x+ λ0

即在 k[x] 中，f(x) | λn−1x
n−1 + · · ·+ λ1x+ λ0，由 f(x) 是不可约多项式知，λn−1 = · · · = λ0 = 0，

因此它们线性无关 □
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评价 若为 θ : k ↪−→ K，类似上述过程，也可进行添根构造

Ex 若 deg(f(x)) = 1，即 f(x) = x− a, a ∈ k，则有域同构 k
∼−→ K = k[x]/(x− a)

例 2.33 x2 + 1 ∈ R[x] 不可约，则有域扩张 R ↪−→ K = R[x]/(x2 + 1)，令 u = x ∈ K，则 K 有基

{1, u}，因为 u ∈ RootK(x2 + 1)，所以在 K 上有因式分解 x2 + 1 = (x + u)(x − u)，如何在 K 中化简

(au+ b)(cu+ d)？

方法一：因为 (ax+ b)(cx+ d) = acx2 + (ad+ bc)x+ bd，由带余除法

acx2 + (ad+ bc)x+ bc = ac(x2 + 1) + (ad+ bc)x− (bd− ac)

所以 acx2 + (ad+ bc)x+ bd = (ad+ bc)x− (bd− ac) = (ad+ bc)u+ (bd− ac)
方法二：因为在 K 中，u2 = −1，所以

(au+ b)(cu+ d) = acu2 + (ad+ bc)u+ bd = (ad+ bc)u+ (bd− ac)

评价 可以证明 K ' C

Ex 求 K = R[x]/(x2 + 2) 的乘法表，问 K 是否与 C 同构？

例 2.34 考虑 F2 = {0, 1}, x2 + x+1 ∈ F2[x] 不可约，因此有域扩张 F2 ↪−→ F2[x]/(x
2 + x+1)

def
= F4，记

u = x ∈ F4，则 F4 有 F2-基 {1, u}，故

F4 = {0, 1, u, u+ 1}

且在 F4 中，有 u2 + u+ 1 = 0，故 u2 = −u− 1 = u+ 1，我们有如下几点观察

• 求 u−1：1 = u(u+ 1)，所以 u−1 = u+ 1

• 求 u3：u3 = u(u2) = u(u+ 1) = u2 + u = 1

• 求 (u+ 1)3：(u+ 1)3u3 = (u2 + u)3 = 1，所以 (u+ 1)3 = 1

• < u+ 1 >= {1, u, u+ 1} 为循环群
上面都是比较取巧的方法，需要极强的注意力，接下来介绍正规做法

• 若要求 f(u)，则考虑与 x2 + x + 1
def
= h(x) 做带余除法 f(x) = q(x)h(x) + r(x)，将 u 代入即得

f(u) = r(u)

• 若要求 f(u)−1，首先考虑与 h(x)做带余除法 f(x) = q(x)h(x)+r(x)，则 f(u) = r(u)，且 gcd(r, h) =
1，考虑 r(x) 与 h(x) 的 Bezout 等式 a(x)r(x) + b(x)h(x) = 1，将 u 代入即得 a(u)r(u) = 1，故

f(u)−1 = r(u)−1 = a(u)

评价 对 ∀f(x) ∈ F4[x], f + f = 2f = 0

Ex 证明：F4 与 Z4 不同构

例 2.35 考虑 F3 = {0, 1, 2}, x2 + 1 ∈ F3[x] 不可约，因此有域扩张 F3 ↪−→ F3[x]/(x
2 + 1)

def
= F9，记

u = x ∈ F9，则 F9 有 F3-基 {1, u}，故

F9 =


0 1 2

u 1 + u 2 + u

2u 1 + 2u 2 + 2u


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且在 F9 中，有 x2 + 1 = (x− u)(x− 2u)，故 RootF9
(x2 + 1) = {u, 2u}，如何求 (1 + 2u)−1？

方法一：待定系数法，假设 (1 + 2u)−1 = au+ b, a, b ∈ F3，则

(au+ b)(1 + 2u) = 2au2 + (2b+ a)u+ b = (2b+ a)u+ (b+ a) = 1

进而 2b+ a = 0, b+ a = 1，则 a = b = 2，故 (1 + 2u)−1 = 2 + 2u

方法二：同例2.34，求 Bezout 等式

Ex 补全上面的 Bezout 等式

Ex 求 F9 的乘法表

0 1 2 u 1 + u 2 + u 2u 1 + 2u 2 + 2u

0 0 0 0 0 0 0 0 0 0

1 0 1 2 u 1 + u 2 + u 2u 1 + 2u 2 + 2u

2 0 2 1 2u 2 + 2u 1 + 2u u 2 + u 1 + u

u 0 u 2u 2 2 + u 2 + 2u 1 1 + u 1 + 2u

1 + u 0 1 + u 2 + 2u 2 + u 2u 1 1 + 2u 2 u

2 + u 0 2 + u 1 + 2u 2 + 2u 1 u 1 + u 2u 2

2u 0 2u u 1 1 + 2u 1 + u 2 2 + 2u 2 + u

1 + 2u 0 1 + 2u 2 + u 1 + u 2 2u 2 + 2u u 1

2 + 2u 0 2 + 2u 1 + u 1 + 2u u 2 2 + u 1 2u

表 1: F9 的乘法表

评价 思考：x2 + x+ 2 ∈ F3[x] 也不可约，同上过程可以得到 F3/(x
2 + x+ 2)

def
= F9，实际上 F9 ' F′

9

命题 2.4.7（添根构造的泛性质）设 f(x) ∈ k[x] 不可约，θ : k ↪−→ K = k[x]/(f(x))，则任给域同态

δ : k ↪−→ F 以及 α ∈ RootF (δ(f))，则存在唯一域同态 δ′ : K −→ F 满足

(1) δ′ ◦ θ = δ

(2) δ′(u) = α，其中 u = x ∈ K

证明 至多唯一性：因为 {1, u, · · · , un−1} 是 K 的一组 k-基，且

δ′
(
θ(an−1)u

n−1 + · · ·+ θ(a1)u+ θ(a0)
)
= δ(an−1)α

n−1 + · · ·+ δ(a1)α+ δ(a0)

即 δ′ 由 θ, u 唯一确定

存在性：由多项式环的泛性质2.4.4，对 k
δ

↪−→ F，存在唯一 δ̃ 如下

δ̃ : k[x] −→ F

x 7−→ α

λ 7−→ δ(λ)
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容易验证 Ker(δ̃) = (f(x))，因此 δ̃ 诱导环同态

δ′ : K = k[x]/(f(x)) −→ F

g(x) 7−→ δ(g)(α)

□

例 2.36 考虑两个添根构造 θ : F3 ↪−→ F9[x] = F3[x]/(x
2 + 1), δ : F3 ↪−→ F′

9 = F3[x]/(x
2 + x+ 2)，求证

F9 ' F′
9

证明 设 u = x ∈ F9, v = x ∈ F′
9，则

F9 =


0 1 2

u 1 + u 2 + u

2u 1 + 2u 2 + 2u

 , F′
9 =


0 1 2

v 1 + v 2 + v

2v 1 + 2v 2 + 2v


要使用泛性质，我们通过坚持与努力找到 α ∈ RootF′

9
(x2 + 1) = {v + 2, 2v + 2}，由泛性质，存在两个域

嵌入
δ′
v+2

: F9 ↪−→ F′
9

0, 1, 2 7−→ 0, 1, 2

u 7−→ v + 2

δ′
2v+1

: F9 ↪−→ F′
9

0, 1, 2 7−→ 0, 1, 2

u 7−→ 2v + 1

由它们是单射，且 |F9| = |F′
9| = 9 知，它们是满射，故 F9 ' F′

9 □

Ex 考虑 F′′
9 = F3[x]/(x

2 + 2x+ 2)，具体构造域同构 F9
∼−→ F′′

9

§ 2.5 欧式整环

定义 2.5.1（欧式整环）整环 R 称为欧式整环 (ED)，若存在 size function

ϕ : R× = R\{0R} −→ Z≥0

a 7−→ ϕ(a)

使得任给 a, b ∈ R×, ∃q, r 满足

a = qb+ r, r = 0R或ϕ(r) < ϕ(b) (2.1)

例 2.37 整数环 Z 是 ED，它的 size function 为绝对值函数 ϕ(z) = |z|，但是表达式 (2.1) 并不唯一，例

如

33 = 3× 9 + 6 = 4× 9 + (−3)

第二个表达式 33 = 4× 9 + (−3) 更好，因为 ϕ(−3) = 3 更小

例 2.38 域上的一元多项式环 k[x] 是 ED，它的 size function 是求次数 ϕ(f(x)) = deg(f(x))
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定理 2.5.1 ED 是 PID

证明 设 R 是 ED，对任意非零理想 I ◁R，取非零元 b ∈ I, s.t. ϕ(b) 最小（ϕ(b) 不唯一）
ClaimClaimClaim：I = (b)

Proof Of Claim : 对 ∀a ∈ I，因为 R 是 ED，所以 ∃q, r ∈ R, s.t. a = qb+ r，因为 r = a− qb ∈ I，
由 b 的最小性知 r = 0R，进而 a = qb ∈ (b)，故 I ⊆ (b)，另一方面显然有 (b) ⊆ I，故 I = (b) □

命题 2.5.1 Gauss 整数环 Z[i] 是 ED。进而是 PID

证明 Recall the norm map
N : Q(i)× −→ Q×

z 7−→ z · z

它是积性函数：N(z1z2) = z1z2z1z2 = N(z1)N(z2)，我们将 N 限制在 Z[i]× 上，仍记为 N，则我们断言

N : Z[i]× −→ Z≥0 就是 size function
Proof Of Claim : 对 ∀x, y ∈ Z[i]×，在 Q(i)× 中，∃α, β ∈ Q, s.t. x

y
= xy

yy
= α + βi，因此 ∃m,n ∈

Z, s.t. |α−m| ≤ 1
2
, |β − n| ≤ 1

2
，故

x

y
= α+ βi = m+ ni+ (α−m) + (β − n)i def

= q + r′

其中 q = m+ ni, r′ = (α−m) + (β − n)i，再记 r = r′y，则 x = qy + r，且

N(r) = N(r′)N(y) = [(α−m)2 + (β − n)2]N(y) ≤
(
1

4
+

1

4

)
N(y) =

1

2
N(y) < N(y)

由 x, y 的任意性知 Z[i] 是 ED □

评价 可以利用范数映射 N 来证明 U(Z[i]) = {±1,±i}

例 2.39 在 Z[i] 中求 gcd(4 + 7i, 3 + 4i)

解 辗转相除法

• 4+7i
3+4i

= 2 +
(
− 2

5
+ i

5

)
=⇒ 4 + 7i = 2(3 + 4i) + (−2− i) =⇒ gcd(4 + 7i, 3 + 4i) = gcd(3 + 4i, 2 + i)

• 3+4i
2+i

= 2 + i =⇒ gcd(3 + 4i, 2 + i) = 2 + i

命题 2.5.2 Z[
√
−2] 是 ED，进而是 PID

证明 仍然考虑范数映射限制在 Z[
√
−2]× 上，仍记为 N

N : Z[
√
−2]× −→ Z≥0

a+ b
√
−2 7−→ a2 + 2b2

□

Ex 补全上面的证明
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Ex 证明 (2, 1 +
√
−3) = (2) + (1 +

√
−3) ⊆ Z[

√
−3] 是素理想，但不是主理想

评价 这个练习说明 Z[
√
−3] 不是 PID，进而不是 ED，实际上如果仿照命题2.5.1的证明过程，放缩过程

会出现 1
4
+ 3 · 1

4
= 1，它不严格小于 1，此时范数映射不再是 size function

Ex 考虑三次单位根 ω = −1+
√
−3

2
, ω2 + ω + 1 = 0，称 Z[ω] = {m + nω|m,n ∈ Z} 为 Eisenstein 整数

环，证明 Frac(Z[ω]) ' Q(
√
−3)

评价 Q(
√
−3) 有两组 Q-基：{1,

√
−3}, {1, ω}

命题 2.5.3 Z[ω] 是 ED，进而是 PID

证明 仍然考虑范数映射限制在 Z[ω]× 上，仍记为 N

N : Z[ω]× −→ Z≥0

a+ bω 7−→ a2 + b2 − ab

□

Ex 补全上面的证明

Ex 证明：

(1) 2 ∈ Z[ω] 是素元
(2) U(Z[ω]) = {±1,±ω,±ω2}

定义 2.5.2（代数整数）考虑 Z ⊆ R ⊆ F = Frac(R)，且 dimQ F < +∞，称 α ∈ F 为代数整数，若
α 满足首一的整系数方程

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0, ∀ai ∈ Z

我们记 F 中的所有代数整数全体位 OF

Fact OF ⊆ F 是子环，对 +,−, · 封闭，且 Frac(OF ) = F

Ex 设 F = Q(
√
−3)，求证 OF = Z[ω]

评价 Z[ω] 是 Dedekind 整环，但 Z[
√
−3] 不是 Dedekind 整环

例 2.40 考虑 Z(
√
2) = {m+ n

√
2|m,n ∈ Z}

Ex 证明

σ : Q(
√
2) −→ Q(

√
2)

a+ b
√
2 7−→ a− b

√
2

是域自同构

Ex 证明 Z[
√
2] 是 ED，进而是 PID

Hint : 考虑 N(a+ b
√
2) = |(a+ b

√
2)σ(a+ b

√
2)|

评价 U(Z[
√
2]) 是无限群

Fact Z[
√
3] 是 ED，但 Z[

√
5] 不是 ED，Z

[
1+

√
5

2

]
是 ED
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§ 2.6 高斯整环
目标：研究 Z[i] 的所有素理想；分类 Z[i] 中的素元

定义 2.6.1（Gauss 素数） Gauss 整环中的素元称为 Gauss 素数

Fact 设 R 是 PID，回忆相伴的定义2.4.5，我们有一一对应关系

{R中的素元}/相伴 −→ Max(R)

a 7−→ (a)

此时 Spec(R) = {(0)} tMax(R)

引理 2.6.1 对 ∀m+ ni ∈ Z[i]，它与 −m− ni,−n+mi, n−mi 相伴

例 2.41 在 Z[i] 中，2 = (1 + i)(1− i) 与 (1 + i)2 相伴

例 2.42 在 Z[i] 中，1 + i 是素元

证明 首先 1 + i 非零非单位，其次在 PID 中素元与不可约元等价，下证 1 + i 不可约，假设 1 + i = xy，

利用范数映射 2 = N(1 + i) = N(x)N(y)，因此一定有 N(x) = 1 或 N(y) = 1，故只能是 x 或 y 为单位，

即 1 + i 只有平凡分解 □

例 2.43 研究 Z[i]/(1 + i)

解 因为 2 = (1 + i)(1− i)，所以 2 = 0，所以 ∀m+ ni ∈ Z[i]，模去 2 得

m+ ni =



0

1

i

1 + i

又因为 1 + i = 0，1− i = −i(1− i) = 1 + i = 0，故 1 = i，故 Z[i]/(1 + i) = {0, 1} ' F2

评价 一些困难的问题往往需要最朴素的分析

Ex 证明：存在群同态 φ : Z[i]→ F2,m+ ni 7→ m+ n，并证明 Z[i]/(1 + i) ' F2

引理 2.6.2 设 z ∈ Z[i]，若 N(z) = p 是素数，则 z 是 Gauss 素数

证明 只需证明 z 是不可约元，假设 z = xy, x, y ∈ Z[i]，则 p = N(z) = N(x)N(y)，因为 N(x), N(y) ∈ N，
故必有一个为 1，不妨设 N(x) = 1，则 x ∈ U(Z[i])，故 z 是不可约元 □
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引理 2.6.3 设 p 是 4k + 3 型素数，则 p 是 Gauss 素数

证明 只需证明 p 不可约，假设有非平凡分解 p = xy，则 p2 = N(p) = N(x)N(y)，由非平凡分解知

N(x) = N(y) = p，假设 x = m + ni，则 N(x) = m2 + n2 = p，两个整数相加是奇数一定是一奇一偶，

不妨设 m = 2i, n = 2j + 1，则 p = m2 + n2 = 4i2 + 4j2 + 4j + 1 = 4(i2 + j2 + j) + 1，与 p 是 4k+ 3 型

素数矛盾！故 p 不可约 □

例 2.44 • 5 = 12 + 22 = (1 + 2i)(1− 2i)

• 13 = 22 + 32 = (2 + 3i)(2− 3i)

• 17 = 12 + 42 = (1 + 4i)(1− 4i)

定理 2.6.1（Fermat 二平方和定理）设 p 为奇素数，则

p = 4k + 1 ⇐⇒ p = a2 + b2, a, b ∈ Z>0且不计次序下表达唯一

证明 (⇐=) : 显然

(=⇒) :Claim：Claim：Claim：有环同构
Z[i]/(p) ' Fp[x]/(x2 + 1)

Proof Of Claim : Step 1. 首先证明有环同构 Z[x]/(x2 + 1) ' Z[i]，考虑多项式环的泛性质2.4.4，存
在唯一群同态

φ : Z[x] −→ Z[i]

x 7−→ i

∀a 7−→ a

下证 Ker(φ) = (x2+1)，一方面显然有 (x2+1) ⊆ Ker(φ)，另一方面，对 ∀f(x) ∈ Ker(φ)，则 f(i) = 0，做

带余除法 f(x) = q(x)(x2+1)+r(x), deg(r(x)) < deg(f(x))，两边同时作用 φ得，r(i) = 0，但是 x2+1为

Z[x] 上的不可约多项式，故只能是 r(x) = 0，所以 f(x) = q(x)(x2 +1) ∈ (x2 +1)，故 Ker(φ) = (x2 +1)，

且显然有 φ 是满射，由环同态基本定理2.2.1知有环同构

φ̃ : Z[x]/(x2 + 1)
∼−→ Z[i]

f(x) 7−→ f(i)

Step 2. 对于环同构 φ̃，有理想对应关系 (p, x2 + 1)/(x2 + 1) = (p)/(x2 + 1)
ϕ̃7−→ (p)，由下面的练习

知，φ̃ 诱导同构

Φ :
Z[x]/(x2 + 1)

(p, x2 + 1)/(x2 + 1)

∼−→ Z[i]/(p)

Step 3. 接下来证明有环同构 Z[x]/(p) ' Fp[x]，考虑满同态

ψ : Z[x] −↠ Fp[x]

x 7−→ x

a 7−→ a
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下面证明 Ker(ψ) = (p)，一方面显然有 (p) ⊆ Ker(ψ)，另一方面对 ∀f(x) = anx
n+· · ·+a1x+a0 ∈ Ker(ψ)，

因为 f(x) ≡ 0，所以 ∀i, p | ai，故 f(x) ∈ (p)，所以 Ker(ψ) = (p)，由环同态基本定理2.2.1知有环同构

ψ̃ : Z[x]/(p) ∼−→ Fp[x]

f(x) + (p) 7−→ f(x)

Step 4. 对于环同构 ψ̃，有理想对应关系 (p, x2 +1)/(p) = (x2 +1)/(p)
ψ̃7−→ (x2 +1)，故 ψ̃ 诱导同构

Ψ :
Z[x]/(p)

(p, x2 + 1)/(p)

∼−→ Fp[x]/(x2 + 1)

Step 5. 类似例2.19，对 Φ,Ψ 两个同构，我们有

Z[i]/(p) ' Z[x]/(x2 + 1)

(p, x2 + 1)/(x2 + 1)
' Z[x]/(p, x2 + 1) ' Z[x]/(p)

(p, x2 + 1)/(p)
' Fp[x]/(x2 + 1)

因此断言得证

又因为 p = 4k + 1，所以 −1 模 p 二次剩余，即 x2 + 1 = 0 在 Fp[x] 中有根，故它在 Fp[x] 中
有因式分解 x2 + 1 = (x − x1)(x − x2), x1, x2 ∈ Fp，进而 x− x1 · x− x2 = 0，即 Fp[x]/(x2 + 1) 不是

整环，由环同构知 Z[i]/(p) 不是整环，故 (p) 不是素理想，即 p 在 Z[i] 中有非平凡分解 p = xy，利

用范数映射 p2 = N(x)N(y)，由非平凡分解知 N(x) = N(y) = p，而 p 不是一个整数的平方和，故

∃a, b ∈ Z\{0}, s.t. x = a+ bi，即 p = N(x) = a2 + b2 □

Ex 若 θ : R
∼−→ S 为环同构，I ◁R, θ(I)◁ S，则 R/I ' S/θ(I)

评价 从 Z[i]/(p) 到 Fp[x]/(x2 + 1) 的同构具体如下

Z[i]/(p) −→ Fp[x]/(x2 + 1)

m+ ni 7−→ m+ nx

定理 2.6.2（Gauss 素数的分类） Gauss 素数在相伴意义下可分为以下三类
(1) 1 + i

(2) 素数 p = 4k + 3

(3) a± bi，其中 a2 + b2 = p 为 4k + 1 型素数

证明 首先由前面的讨论知 (1)(2)(3) 均为 Gauss 素数，且互不相伴，下面证明任意 Gauss 素数都为上述
三种中的一种，设 z ∈ Z[i] 为 Gauss 素数，在 Z 中对 N(z) 做素因子分解

z | z · z = N(z) = pe11 · · · penn

注意到每个整素数可以被上述三种数表示

• 2 = (1 + i)(1− i)
• 4k + 3 型素数 pi = pi

• 4k + 1 型素数 pi = a2 + b2 = (a+ bi)(a− bi)
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所以有 z | N(z) = z1 · · · zs，其中 ∀i, zi 为 (1)(2)(3) 三种 Gauss 素数，故 ∃1 ≤ i ≤ s, s.t. z | zi，由于
z, zi 均为 Gauss 素数，故 z, zi 相伴，故 z 为上述三类中的某一类 □

评价 由 Dirichlet 定理，4k + 1 型、4k + 3 型素数均匀无穷多个，故 Gauss 素数也有无穷多个

Ex 证明：对 ∀p ∈ Spec(Z[i])，则 (p ∩ Z) ∈ Spec(Z)

例 2.45 由上面的练习，我们可以画出 Spec(Z[i]) −↠ Spec(Z) 的图像

(0)

· · ·

(2 + 3i)(2− 3i) (11) (7) (1 + 2i)(1− 2i) (3) (1 + i)Spec(Z[i])

(0) (13) (11) (7) (5) (3) (2)Spec(Z)

命题 2.6.1 ∀z ∈ Z[i] 均有素分解

证明 即证明 ∀z ∈ Z[i] 有不可约分解，若素数 p | N(z) = zz ∈ Z
Case 1. 若 p = 4k + 3，则 p 为 Gauss 素数，p | z
Case 2. 若 p = 4k + 1，则 p = a2 + b2 =⇒ (a+ bi) | z 或 (a− bi) | z
Case 3. 若 p = 2，则 (1 + i) | z
对 z

p
或 z

a±bi 或
z

1+i
继续进行上述过程，有限步后停止 □

例 2.46 在 Z[i] 中，分解 z = 29− 2i

解 因为 N(z) = zz = 292+22 = 5×132，所以可能的因子有 1±2i, 2±3i，逐个尝试可得 29−12i
1+2i

= 5−12i，又
因为 N(5−12i) = 132，所以可能的因子有 2±3i，逐个尝试可得 5−12i

2+3i
= 2+3i，所以 29−2i = (1+2i)(2+3i)2

Fact (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2

证明 |a+ bi|2|c+ di|2 = |(a+ bi)(c+ di)|2 □

定理 2.6.3（二平方和定理）对 ∀n ≥ 2，n 可以写为二平方和当且仅当 n 有标准分解

n = 2lpm1
1 · · · pmt

t

且当 pi = 4k + 3 时，mi 为偶数

证明 (⇐=) : 由定理2.6.1，4k + 1 型素数可以写为二平凡和，即 p2j = a2j + b2j，所以

n = (12 + 12)l
∏

pi=4k+3

(p2i + 02)
mi
2

∏
pj=4k+1

(a2j + b2j)
mj

再结合上面的 Fact，即可将 n 表示为二平方和（表达不唯一！）

(=⇒) : 若 n = a2 + b2 = (a+ bi)(a− bi)，将 z = a+ bi 在 Z[i] 中进行素分解得 z = z1 · · · zn，不难
看出 n = N(z1) · · ·N(zn) 即为标准分解 □

Ex P92 T2

Ex 设 a, b ∈ Z, gcd(a, b) = 1，求证 Z[i]/(a2 + b2) ' Z/(a2 + b2)
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§ 2.7 唯一分解整环

定义 2.7.1（唯一分解整环）整环 R 称为唯一分解整环 UFD(unique factorization domain)，若对
∀a ∈ R
(1) 存在不可约分解：∃c1, · · · , cr ∈ R 不可约，使得 a = c1 · · · cr
(2) 不可约分解唯一：若 ∃c1, · · · , cr, d1, · · · , ds 不可约，使得 a = c1 · · · cr = d1 · · · ds，则 r = s，且

在调整顺序后，ci 和 di 相伴

Fact 设 R 为 UFD，则
(1) 不可约元与素元等价

Proof :只需证明不可以元是素元，假设 a ∈ R不可约，且非零非单位，若 a | bc，则 ∃d ∈ R, s.t. ad =

bc，对 b, c, d 作不可约分解得

ad1 · · · dr = (b1 · · · bs)(c1 · · · ct)

由不可约分解唯一知，存在某个 bi 或 ci 使得 a 与其相伴，因此 a | b 或 a | c
(2) R 中有标准分解，即 ∀a ∈ R, ∃u ∈ U(R), pi 为素元且互不相伴，使得

a = upn1
1 · · · pnr

r

则在相伴意义下，a 的因子总形如

vpm1
1 · · · pmr

r , ∀i, 0 ≤ mi ≤ ni, v ∈ U(R)

(3) 对 ∀a, b ∈ R, gcd(a, b), lcm(a, b) 存在：设 a = upn1
1 · · · pnr

r , b = vpm1
1 · · · pmr

r ，其中 ∀i, ni,mi ≥
0, u, v ∈ U(R)，则

gcd(a, b) 相伴∼
r∏
i=1

p
min{ni,mi}
i , lcm(a, b)

相伴∼
r∏
i=1

p
max{ni,mi}
i

(4) K
def
= Frac(R) 中有即约表达，即 ∀a, b ∈ Frac(R), ∃a′, b′ ∈ R, s.t. a

b
= a′

b′
，其中 gcd(a′, b′) = 1，且

即约表达 a′

b′
在相伴意义下唯一，即若 a′

b′
= a′′

b′′
，则 a′

相伴∼ a′′, b′
相伴∼ b′′

评价 在 UFD 中，不可约分解与素分解是一回事

定义 2.7.2（生成理想）设 X ⊆ R 是环 R 的子集，称

(X) = RX =

{
有限和

n∑
i=1

aixi|ai ∈ R, xi ∈ X

}
◁R

为由 X 生成的理想，它是包含 X 的最小理想，若 X 是有限集合，则称 (X) = RX 是有限生成理想

评价 特别地，若 X = {a}，则 (X) = (a) 就是先前定义的主理想
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定义 2.7.3（Noether）环 R 称为 Noether 环，若任意理想均有限生成

例 2.47 根据定义知 PID 是 Noether 环

定理 2.7.1（Hilbert 基定理）设 R 是 Noether 环，则 R[x1, · · · , xn] 以及其商环均为 Noether 环

评价 由 R[x1, · · · , xn] ' R[x1, · · · , xn−1][xn] 知，只需证明若 R 是 Noether 环，则 R[x] 是 Noether 环；
由对应定理2.2.2知 R 的商环的理想也是有限生成的；但是上课没有给出具体证明

定理 2.7.2 设 R 是 Noether 环，则 ∀a ∈ R 均存在不可约分解

证明 设 ∃a ∈ R\U(R) 没有不可约分解，若 a = a1a2，则 a1, a2 必有一者没有不可约分解，不妨设为 a1，

若 a1 = a11a12，依此类推我们得到严格的理想升链

(a) $ (a1) $ (a11) $ · · ·

由下面的练习知，这是不可能的 □

Ex 设 R 是 Noether 环，则理想升链 I1 $ I2 $ · · · 稳定，即 ∃N > 0, s.t. IN = IN+1 = · · ·

Fact 设 R 是整环，若 a ∈ R 有素分解 a = p1 · · · pr，则 a 的不可约分解在相伴意义下唯一

证明 设 a = c1 · · · cs 为 a 的一个不可约分解，则 ∃ci, s.t. p1 | ci，不妨设 p1 | c1，又因为 c1 是不可约元，

所以 p1 与 c1 相伴，继续进行上述过程可知 r = s，且 pi 与 ci 相伴 □

推论 2.7.1 设 R 是整环，则 R 是 UFD ⇐⇒ ∀a ∈ R 存在素分解

推论 2.7.2 设整环 R 中每个非零非单位元素都有不可约分解，则 R 是 UFD ⇐⇒ R 中素元与不可

约元等价

评价 PID 是 Noether 环；ED 是 PID 是 UFD

定理 2.7.3（Gauss 定理）若 R 是 UFD，则 R[x] 是 UFD

例 2.48 Z[x] 是 UFD 但不是 PID，考虑 (2, x)，它不能被一个元素表示；k[x, y] 是 UFD，但不是 PID

为了证明高斯定理，我们需要一些铺垫

定义 2.7.4（容度）设 f(x) = anx
n + · · · + a1x + a0 ∈ R[x], an 6= 0R，定义 f(x) 的容度为 c(f) =

gcd(a0, · · · , an) ∈ R
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定义 2.7.5（本原多项式）称 f(x) ∈ R[x] 是本原多项式，若 c(f)
相伴∼ 1R，实际上我们可以对 ∀f(x) ∈

R[x] 进行本原化，即 f(x) = c(f)f0(x)，其中 f0(x) 为本原多项式

引理 2.7.1（Gauss 引理）设 f(x), g(x) ∈ R[x] 为本原多项式，则 f(x)g(x) ∈ R[x] 也是本原多项式

证明 设 f(x) = anx
n + · · ·+ a1x+ a0, g(x) = bmx

m + · · ·+ b1x+ b0 是本原多项式，下证 f(x)g(x) 本原

方法一：因为 f(x)g(x) =
m+n∑
l=0

clx
l, cl =

∑
i+j=l

aibj , 0 ≤ l ≤ m+ n，我们断言：gcd(c0, · · · , cm+n) = 1

Proof Of Claim : 否则，∃p ∈ R 素元，使得 p | c0, · · · , p | cm+n，又因为∃!0 ≤ i0 ≤ n, s.t. p | a0, · · · p | ai0−1,但p - ai0
∃!0 ≤ j0 ≤ m, s.t. p | b0, · · · p | bj0−1,但p - bj0

考虑 ci0+j0 = (a0bi0+j0 + · · ·+ai0−1bj0+1)+ai0bj0 +(ai0+1bj0−1+ · · ·+ai0+j0b0)，由 p | ci0+j0 知，p | ai0bj0，
故 p | ai0 或 p | bj0，但这与假设矛盾 □

方法二：反证假设同上，考虑模 p 约化，我们有满同态

π : R −↠ R/(p)

r 7−→ r

它诱导了多项式环同态

π̃ : R[x] −↠
(
R/(p)

)
[x]

h(x) 7−→ h(x)

其中若 h(x) = anx
n + · · ·+ a1x+ a0，则 h(x) = anx

n + · · ·+ a1x+ a0，由假设知 π̃(fg) = 0，而由 p 是

素元知，R/(p)[x] 是整环，因此 π̃(f) = 0 或 π̃(g) = 0，这与 f(x), g(x) 是本原多项式矛盾！ □

Ex 证明：∀c ∈ R,R[x]/(c) ' R/(c)[x]

接下来我们可以证明 Gauss 定理2.7.3

证明 对 ∀f(x) ∈ R[x]，我们可以将 f(x) 本原化，即 f(x) = c(f)f0(x)，其中 f0(x) 是本原多项式

Step 1.对容度 c(f)在 R[x]中进行分解：因为 R是 UFD，所以 c(f)在 R中有素分解 c(f) = c1 · · · cr，
再由上面的练习知，R/(ci)[x] ' R[x]/(ci)，因为 ci ∈ R 是素元，所以 R/(ci)[x] 是整环，故 R[x]/(ci) 也

是整环，则 ci ∈ R[x] 也是素元，所以 c(f) = c1 · · · cr 也是 R[x] 中的素分解

Step 2. 记 K = Frac(R)，因为 K[x] 是 ED =⇒ PID =⇒ UFD，所以在 K[x] 中有

f0(x) = f1(x) · · · fs(x), ∀i, fi(x) ∈ K[x]不可约

对于任意 fi(x) ∈ K[x]，我们可以通过通分（乘以分母的公倍数）使得 fi(x) =
1
ai
f̃(x)，其中 f̃i(x) ∈ R[x]，

再对 f̃i(x) 取容度得 fi(x) =
c(f̃)
ai
f̄i(x)，其中 f̄i(x) 本原，因此我们可以一开始就不妨设 fi(x) =

1
ai
f̃(x)，

其中 f̃(x) 本原（谨慎通分），所以我们有

f0(x) =
1

a1 · · · as
f̃1(x) · · · f̃s(x), ∀i, f̃i(x)本原
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由 Gauss 引理知， 1
a1···as

相伴∼ 1R

Step 3. 证明 f̃i(x) 在 R[x] 中是素元，假设 f̃i(x) = u(x)v(x) in R[x]，则在 K[x] 中也有 f̃i(x) |
u(x)v(x)，而 f̃i(x) 在 K[x] 中是素元，可不妨设 f̃i(x) | u(x) in K[x]，故 ∃h(x) ∈ K[x], s.t. f̃i(x)h(x) =
u(x)，可设 h(x) = m

n
˜h(x)，其中 h̃(x) 本原，则 nu(x) = mf̃i(x)h̃(x)，两边同时取容度得 nc(u) = m，即

u(x) = c(u)f̃i(x)h̃(x)，而 u(x) ∈ R =⇒ c(u) ∈ R，所以 f̃i(x) | u(x) in R[x]，所以 f̃i(x) 在 R[x] 中是素

元

综上 f(x) = uc1 · · · crf̃1(x) · · · f̃s(x) 为 f(x) 的素分解，再由推论2.7.1即得证 □

命题 2.7.1 设 R 是 UFD,K = Frac(R)，若 f(x) ∈ R[x] 本原，则

f(x)在R[x]中不可约 ⇐⇒ f(x)在K[x]中不可约

Ex 证明留作练习

例 2.49 求证 f(x) = x3 + 3x− 2 在 Q[x] 中不可约

证明 由命题2.7.1，只需证明 f(x)在 Z[x]上不可约，假设 f(x)可约，则一定存在因子 (3 = 1+2 = 1+1+1)，

故 f(x) 有整数根 x = a，可设 f(x) = (x− a)(x2 + bx+ c)，因此 ac = 2，即 a | 2, a = ±1,±2，但是经
过计算 f(±1), f(±2) 6= 0，矛盾！ □

命题 2.7.2（Eisenstein 判别法）设 R 是 UFD, f(x) = cnx
n + · · · + c1x + c0 ∈ R[x] 是本原多项式，

若 ∃p ∈ R 素元，满足
(1) p - cn
(2) p | cn−1, · · · , p | c1, p | c0
(3) p2 - c0
则 f(x) ∈ R[x] 不可约，进而 f(x) ∈ K[x] 不可约

评价 实际上条件 (2) 加上 f 本原可以推出条件 (1)

证明 方法一：设 f(x) = g(x)h(x), g(x) =
r∑
i=0

aix
i, h(x) =

n−r∑
j=0

bjx
j，则 g(x), h(x)本原，p | c0 = a0b0, p

2 - c0，

因此不妨设 p | a0 但 p - b0，则 ∃!1 ≤ i0 ≤ r − 1, s.t. p | a0, · · · , p | ai0−1，但 p - ai0（若 i0 = r，则将导

致 p | cn，矛盾！），则
ci0 = ai0b0 + ai0−1b1 + · · ·+ a0bi0

由 p | ci0 知，p | ai0b0，这与 p - ai0 , p - b0 矛盾！
方法二：模 p 约化，考虑满同态

π : R[x] −→ R/(p)[x]

x 7−→ x

a 7−→ a

则 cnx
n = π(f) = π(g)π(h)，故 π(g), π(h) 的常数项系数均为 0，故 p2 | c0，矛盾！ □
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例 2.50 ∀n ≥ 1, x2 − 2 ∈ Q[x] 不可约

证明 即证明 x2 − 2 ∈ Z[x] 不可约，取素数 p = 2，由 Eisenstein 判别法即证 □

Ex 设 g(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x]，定义 g(x+ b) = an(x+ b)n + · · ·+ a1(x+ b) + a0，证明

(1) g(x) 本原 ⇐⇒ g(x+ b) 本原

(2) g(x) 不可约 ⇐⇒ g(x+ b) 不可约

评价 将 Z 换为一般的 UFD 均对

例 2.51 设 p 是素数，则 f(x) = 1 + x+ · · ·+ xp−1 = xp−1
x−1
∈ Q[x] 不可约

证明 由上面的练习，只需证明 f(x+ 1) 在 Z[x] 中不可约即可，因为

f(x+ 1) =
(x+ 1)p − 1

x
=

p−1∑
i=0

(
p

i+ 1

)
xi

取素数 p，由 Eisenstein 判别法知 f(x+ 1) 不可约

例 2.52 f(x, y) = y3 − x2 ∈ k[x, y] =
(
k[x]

)
[y] 不可约

证明 假设它可约，将它视为以 k[x] 中元素为系数，以 y 为字母的多项式，则 k[x][y] 中有分解

y3 − x2 = [y − a(x)] · [y2 + b(x)y + c(x)]

所以 m(x)3 − x2 = 0，这显然无解，故矛盾！ □

评价 由于 y3−x2 ∈ k[x, y] 不可约，且它是 k[x, y] = k[x][y] 中的本原多项式，又因为 k(x) = Frac(k[x])，
故 y3−x2 在 k(x)[y] 中不可约，则 k(x)[y]/(y3−x2) 是域，且 k(x)[y]/(y3−x2) ' Frac (k[x, y]/(y3 − x2))

Ex 设 R = k[t], t 是字母，令 S = {f(t) ∈ R|f(t)的t1项系数为零}，求证
(1) S ' k[x, y]/(y3 − x2)
(2) Frac(S) = k(t)

评价 S 是 R 的子环，但是 S 不是 UFD，因为 t6 = t3 · t3 = t2 · t2 · t2

§ 2.8 中国剩余定理

定义 2.8.1（环的直积）设 R1, · · · , Rs 均为环，在 R1 × · · · ×Rs 中定义加法与乘法如下(a1, · · · , as) + (b1, · · · , bs) = (a1 + b1, · · · , as + bs)

(a1, · · · , as) · (b1, · · · , bs) = (a1b1, · · · , asbs)

容易验证 (R1 × · · · × Rs,+, ·) 是一个环，称为 R1, · · · , Rs 的直积，它的零元是 (0R1
, · · · , 0Rs

)，幺

元是 (1R1
, · · · , 1Rs

)

评价 R1 × · · · ×Rs 不是整环，比如 (0, 1, · · · , 1) · (1, 0, · · · , 0) = (0, · · · , 0)
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Fact U(R× S) = U(R)× U(S)

定义 2.8.2（互素）若 I ◁R, J ◁R，且 I + J = R，则称 I 与 J 互素

命题 2.8.1 设 {Ii}ni=1 是 R 的一族理想，且 ∀i 6= j, Ii 与 Ij 互素，则

Ii +
∏
j 6=i

Ii = R, ∀i

证明 由对称性只需证明 I1 + I2 · · · In = R，因为 IJ ⊂ I，所以

R = RR = (I1 + I2)(I1 + I3)

= I1(I1 + I2 + I3) + I2I3

⊂ I1 + I2I3 ⊂ R

即 R = I1 + I2I3，假设命题对 n− 1 成立，则

R = RR = (I1 + In)(I1 + I2 · · · In−1) = I1(I1 + In + I2 · · · In−1) + In ⊂ I1 + In ⊂ R

即 R = I1 + I2 · · · In □

命题 2.8.2 设 I ◁R, J ◁R, I + J = R，则 I ∩ J = IJ

证明 一方面，因为 IJ ⊂ I, IJ ⊂ J，所以 IJ ⊂ I ∩ J；另一方面，因为 I + J = R，所以 ∃u ∈ I, v ∈
J, s.t. u+ v = 1，则 ∀x ∈ I ∩ J, x = ux+ vx ∈ IJ，即 IJ ⊂ I ∩ J，综上有 IJ = I ∩ J □

评价 由数学归纳法，该命题可推广到一般情形，即 I1 ∩ · · · ∩ In = I1 · · · In

定理 2.8.1（中国剩余定理）设 R 是环，I1, · · · , In ◁ R，若 ∀i 6= j, Ii + Ij = R，即它们两两互素，

则环同态

φ : R −→ (R/Ii)× · · · × (R/In)

r 7−→ (r + I1, · · · , r + In)

是满同态，且它诱导了环同构

φ̃ : R/(I1 · · · In)
∼−→ (R/Ii)× · · · × (R/In)

证明 先证 φ是满射：即对 ∀(a1+I1, · · · , an+In) ∈
n∏
i=1

(R/Ii)，要找到 b ∈ R, s.t. φ(b) = (a1+I1, · · · , an+

In)，即同余方程组 
b ≡ a1 mod I1

· · · · · · · · ·

b ≡ an mod In
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有解 b ∈ R，由命题2.8.1知，I1 + I2 · · · In ∈ R =⇒ ∃ξ1 ∈ I1, b1 ∈ I2 · · · In, s.t. ξ1 + b1 = 1，则

b1 ≡ 1 mod I1

b1 ≡ 0 mod I2

· · · · · · · · ·

b1 ≡ 0 mod In

类似可以找到 bi, ∀i，取 b = a1b1 + · · ·+ anbn 即为所求，故 φ 是满射

再证 Ker(φ) = I1 ∩ · · · ∩ In，这是因为

a ∈ Ker(φ) ⇐⇒ a ≡ 0 mod Ii, ∀i ⇐⇒ a ∈ Ii, ∀i

⇐⇒ a ∈ I1 ∩ · · · ∩ In

所以 Ker(φ) = I1 ∩ · · · ∩ In，进而由环同态基本定理2.2.1知有环同构

R/(I1 ∩ · · · ∩ In)
∼−→ (R/Ii)× · · · × (R/In)

最后结合命题2.8.2知，I1 · · · In = I1 ∩ · · · ∩ In，故有环同构

φ̃ : R/(I1 · · · In)
∼−→ (R/Ii)× · · · × (R/In)

□

例 2.53 设 m,n ∈ Z, gcd(m,n) = 1，则

Zmn = Z/(mn) =
Z

(m) ∩ (n)
' Zm × Zn
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第三章 域

§ 3.1 基本定义与单扩张

定义 3.1.1（域扩张）域扩张是指域同态 θ : k ↪−→ K，记作 K/k

评价 (1) 有域同构

θ : k
∼−→ θ(k)

子域

⊆ K

λ 7−→ θ(λ) ∈ K

即我们可以将 k 与 K 的子域 θ(k) 等同起来，但是记号 K/k 真事隐，它没有体现 θ 的信息

(2) 给定 θ : k ↪−→ K,K 自然成为 k-线性空间，加法数乘定义为
• 加法：∀v1,v2 ∈ K,v1 + v2 ∈ K
• 数乘：∀v ∈ K,λ ∈ k, λ · v = θ(λ) · v

例 3.1 IdC : C→ C, σ : C→ C, z 7→ z 都记为 C/C，但实际上它们表示的是不同的域扩张，故记号 K/k

是“危险”的记号

定义 3.1.2（域扩张的维数）称 K 作为 k-线性空间的维数为域扩张 K/k 的维数，记作 dimkK 或

[K : k]

例 3.2（添根构造）设 f(x) ∈ k[x] 首一不可约，deg(f(x)) ≥ 2，则 (f(x)) ∈ Max(k[x])，因此 K =

k[x]/(f(x)) 是域，我们有域扩张

k ↪−→ K

λ 7−→ λ, 仍记为λ

由先前分析知，dimkK = deg(f(x)) 记为= d，记 u = x ∈ K，则 u ∈ RootK(f)，且 K 有一组 k-基
{1, u, · · · , ud−1}

例 3.3 设 k为域，k(x) = Frac(k[x]) =
{
f(x)
g(x)

∣∣∣∣∣f(x), g(x) ∈ k[x], g(x) 6= 0

}
，由 k[x]是 UFD知，f(x)

g(x)
∈ k(x)

有即约表达，我们有域扩张

k ↪−→ k(x)

λ 7−→ λ

1
, 仍记为λ

Fact dimkK = +∞，因为
{

1
1
, x
1
, x

2

1
, · · ·

}
是 k-线性无关的

定义 3.1.3（域扩张的同构）设 θ : k ↪−→ K, θ′ : k ↪−→ K ′，称 θ, θ′ 是域扩张的同构，若存在域同构

φ : K
∼−→ K ′, s.t. φ ◦ θ = θ′，即下面的图交换

k K

K ′
θ′

θ

ϕ
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评价 φ 是 k-线性同构，故保域扩张的维数，即 dimkK = dimkK
′

Ex 设 K = k(t),m, n ≥ 2 且 m 6= n，考虑域扩张

θ1 : K ↪−→ K

f(t)

g(t)
7−→ f(tm)

f(tm)

θ2 : K ↪−→ K

f(t)

g(t)
7−→ f(tn)

f(tn)

求证 θ1, θ2 不同构

定义 3.1.4（域扩张的自同构）域扩张 θ : k ↪−→ K 的自同构是指域同构 ϕ : K
∼−→ K，满足 ϕ◦θ = θ，

我们称 Aut(K/k) = {ϕ ∈ Aut(K)|ϕ ◦ θ = θ} 记为域扩张 K/k 的自同构群

评价 称 Aut(K) 为 K 的自同构群，则 Aut(K/k) ≤ Aut(K)；我们定义的 Aut(K/k) 实际上隐藏了 θ

的信息，但是实际上大部分 Aut(K/k) 中的 θ 都是 Idk，即大部分语境下有

Aut(K/k) = {ϕ ∈ Aut(K) : ϕ|k = Idk}

接下来进行一些符号约定

定义 3.1.5 设 R
子环

⊆ S, α ∈ S，定义

R[α]
def
=

{
n∑
i=0

riα
i

∣∣∣∣ri ∈ R
}

为包含 R 及 α 的最小子环；若为环嵌入 θ : R ↪−→ S, α ∈ S，我们类似定义

R[α]
def
= θ(R)[α] =

{
n∑
i=0

θ(ri)α
i

∣∣∣∣ri ∈ R
}

为包含 θ(R) 及 α 的最小子环

评价 (1) 上述求和要求为有限和，约定 α0 = 1R

(2) 若为 R
子环

⊆ S，则我们有满同态

R[x] −↠ R[α]

f(x) 7−→ f(α)

若为 R ↪−→ S，则我们有满同态

R[x] −→ R[α]

f(x) 7−→ θ(f)(α)

(3) 类似地，我们可以定义 R[α1, α2] = R[α1][α2] = R[α2][α1]
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定义 3.1.6 设 k
子域

⊆ K,α ∈ K，定义

k(α)
def
=


n∑
i=0

riα
i

m∑
j=0

rjαj

∣∣∣∣∣∣∣∣ ri, rj ∈ k,
m∑
j=0

rjα
j 6= 0K


为包含 k 和 α 的最小子域；若为域嵌入 θ : k ↪−→ K，我们类似定义

k(α)
def
=


n∑
i=0

θ(ri)α
i

m∑
j=0

θ(rj)αj

∣∣∣∣∣∣∣∣ ri, rj ∈ k,
m∑
j=0

θ(rj)α
j 6= 0K


为包含 θ(k) 和 α 的最小子域

评价 (1) k[α] ⊆ k(α)
(2) k(α) 与 k[x] 可能不相关

例 3.4 Q ⊆ C，则 Q(i) = Q[i] = {a+ bi|a, b ∈ Q}

定义 3.1.7（单扩张）域扩张 K/k 称为单扩张，若 ∃α ∈ K, s.t. K = k(α)，我们称 α 为域扩张 K/k

的生成元

例 3.5 添根构造 k ↪−→ K = k[x]/(f(x)) 是单扩张，因为 K = k(u) = k[u]

例 3.6 k ↪−→ k(x) 是单扩张，生成元为 x，但是 k[x] $ k(x)

例 3.7 Q ⊆ Q(i) 是单扩张；Q ⊆ C 也是单扩张，因为 C = R(i) = R[i]

定义 3.1.8（代数、超越元）设有域扩张 K/k，称 α ∈ K 为 k 上代数元，若存在非零多项式 f(x) ∈
k[x], s.t. f(α) = 0，即若 f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0，则

f(α) = αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

否则，则称 α ∈ K 是 k 上的超越元

评价 ∀a ∈ k, α = θ(a) ∈ K 一定是 k 上的代数元，只需取 f(x) = x− α 即可

例 3.8 考虑域扩张 C/Q,
√
2 ∈ C 为 Q 上代数元，因为 f(x) = x2− 2, f(

√
2) = 0；由数学分析的知识知，

π, e 不是 Q 上的代数元

例 3.9 考虑添根构造 k ↪−→ K = k[x]/(f(x))，由 f(u) = 0K 知，u是 k 上代数元，我们断言：∀0 6= z ∈ K
均为 k 上代数元，因为 dimkK = deg(f) def

= d，则

{1, z, · · · , zd−1} k-线性相关

即 ∃λ0, · · · , λd−1 ∈ k, s.t. λ0+λ1z+ · · ·+λd−1z
d−1 = 0，取 f(x) = λ0+λ1x+ · · ·+λd−1x

d−1，则 f(z) = 0
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Ex 考虑 k ↪−→ k(t), t 是 k 上的超越元，求证：∀ f(t)
g(t)
∈ k(t)\k 均为 k 上的超越元

定理 3.1.1（最小多项式）设有域扩张 K/k, α ∈ K 是 k 上的代数元，则存在唯一首一不可约多项式

f(x) ∈ k[x] 满足 f(α) = 0K，我们称 f(x) 为 α 在 k 上的最小多项式

证明 考虑赋值同态

evα : k[x] −→ K

g(x) 7−→ g(α)

由于 k[x] 是 PID，所以 ∃f(x) ∈ k[x], s.t. Ker(evα) = (f(x))，由环同态基本定理知，存在环同构

k[x]/(f(x)) ' Im(evα) = k[α]

因为 k[α] ⊆ K 为整环，所以 k[x]/(f(x)) 也为整环，故 f(x) 是 k[x] 上的素元，即 f(x) 是 k[x] 上的不

可约多项式，由 f 首一保证唯一性 □

评价 (1) 一般我们默认 k ⊆ K 是子域，即 θ = inc，若为 θ : k ↪−→ K，则 f(α) = 0K 实际上是

θ(f)(α) = 0K

(2) 讨论最小多项式时，一定要说明是哪个域上的最小多项式，见下面例3.11
(3) 对 ∀g(x) ∈ k[x]，若 g(α) = 0，则 g(x) ∈ Ker(evα) =⇒ f(x) | g(x)，即 α 的零化多项式一定被 f

整除

(4) 由于 k[x]/(f(x)) ' k[α]，且 k[x]/(f(x)) 是域，故 k[α] 也是域，此时有 k(α) = Frac(k[α]) = k[α]，

即对于代数扩张，k[α] = k(α)

例 3.10 考虑域扩张 C/Q，则
•
√
2 在 Q[x] 上的最小多项式为 x2 − 2

•
√
3 在 Q[x] 上的最小多项式为 x2 − 3

• ω = e
2πi
3 在 Q[x] 上的最小多项式为 x2 + x+ 1

例 3.11 考虑域扩张 Q( 4
√
2)/Q 和 Q( 4

√
2)/Q(

√
2)，则 4

√
2 在 Q 上的最小多项式为 x4 − 2（取 p = 2 用

Eisenstein 判别法），但 4
√
2 在 Q(

√
2) 上的最小多项式为 x2 −

√
2

Ex 求
√
2 +
√
3,
√
3 + ω 在 Q 上的最小多项式

评价 一般做法是求得一个零化多项式，再观察它是否有因式或是否可约，例如求
√
2 +
√
3 在 Q 上的最

小式，设 α =
√
2 +
√
3，则 α−

√
2 =
√
3，两边同时平方得

α2 + 2− 2
√
2α = 3 =⇒ α2 − 1 = 2

√
2α

两边再平方，移项即可得到
√
2 +
√
3 的一个零化多项式

定理 3.1.2（单扩张结构定理）设有域扩张 K/k 和 α ∈ K, s.t. K = k(α)，则

(1) 若 α 是 k 上的代数元，α 在 k 上的最小多项式为 f(x), deg(f(x)) = d ≥ 1，则

• dimkK = d < +∞
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• K 有一组 k-基 {1, α, · · · , αd−1}，且 K = k(α) = k[α]

• 域扩张 k ↪−→ k(α) = K 与域扩张 k ↪−→ k[x]/(f(x)) 同构

(2) 若 α 是 k 上的超越元，则

• dimkK = +∞
• k[α] $ K

• 域扩张 k ↪−→ k(α) = K 与域扩张 k ↪−→ k(x) 同构

证明 (1) 考虑赋值同态

evα : k[x] ↪−→ K

g(x) 7−→ g(α)

同定理3.1.1的证明过程我们有 Ker(evα) = (f(x))，且由 K = k(α) 知 evα 是满同态，由环同态基
本定理知

evα : k[x]/(f(x)) −→ K = k(α)

u = x 7−→ α

是同构，用交换图表示为

k[x]/(f(x)) K = k(α)

k

evα

(2) 考虑赋值同态

evα : k[x] ↪−→ K = k(α)

g(x) 7−→ g(α)

由分式域的泛性质2.3.1，存在唯一的域同态 φ̃ : Frac(k[x]) = k(x) ↪−→ K = k(α)，满足 φ̃◦canR = φ，

即下面的图交换

k[x] K = k(α)

Frac(k[x]) = k(x)

ϕ

can
ϕ̃

显然有 φ̃ 是满射，且它是域扩张的同构

□

评价 本质上只有以上两种单扩张

Ex 考虑域扩张 Q( 3
√
2)/Q，证明

(1) Q( 3
√
2) 有一组 Q-基 {1, 3

√
2, 3
√
4}

(2) 记 ω = e
2πi
3 ，证明存在域扩张的同构 Q( 3

√
2ω)/Q ' Q( 3

√
2)/Q，但是作为集合，Q( 3

√
2ω) 6= Q( 3

√
2)

§ 3.2 代数扩张
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定义 3.2.1（代数扩张）域扩张 K/k 称为代数扩张，若 ∀α ∈ K,α 是 K 上的代数元

引理 3.2.1（有限维域扩张总是代数扩张）设有域扩张 K/k，若 dimkK < +∞，则 K/k 是代数扩

张

证明 对 ∀α ∈ K，有域扩张塔 k ⊆ k(α) ⊆ K，故 k(α) 是 K 的线性子空间，则 d
def
= dimk k(α) ≤

dimkK < +∞，故 {1, α, · · · , αd} 是 k-线性相关的，因此 α 在 k 上代数 □

定理 3.2.1（维数公式）设有域扩张塔 k ⊆ E ⊆ K，若 E/k,K/E 均为有限维域扩张，则 K/k 也是

有限维域扩张，且

dimkK = dimk E · dimEK

证明 设 dimk E = n, dimEK = m，设 E/k的一组 k-基为 {u1, · · · , un},K/E的一组 E-基为 {v1, · · · , vm}
Claim：Claim：Claim：K 有一组 k-基 {uivj |1 ≤ i ≤ n, 1 ≤ j ≤ m} □

Ex 补全上面的证明

例 3.12 求 dimQ Q(
√
2,
√
3)

解 考虑域扩张塔 Q ⊆ Q(
√
2) ⊆ Q(

√
2,
√
3) = Q(

√
2)(
√
3)，则

(1) dimQ Q(
√
2)：
√
2在 Q上的最小多项式为 x2−2，因为

√
2 6= Q，所以 dimQ Q(

√
2) = deg(x2−2) = 2，

且 Q(
√
2) 有一组 Q-基 {1,

√
2}

(2) dimQ(
√
2) Q(

√
2,
√
3)：显然，x2 − 3 在 Q 上的一个零化多项式为 x2 − 3，下证它不可约，即证明

√
3 /∈ Q(

√
2)，由于 Q(

√
2)有一组 Q-基 {1,

√
2}，假设

√
3 ∈ Q(

√
2)，则 ∃a, b ∈ Q, s.t.

√
3 = a+b

√
2，

两边平方得

3 = a2 + 2b2 + 2
√
2ab =⇒

3 = a2 + 2b2

ab = 0

但是上述方程无解，矛盾！所以 dimQ(
√
2) Q(

√
2,
√
3) = deg(x2 − 3) = 2，且 Q(

√
2,
√
3) 有一组

Q(
√
2)-基 {1,

√
3}

(3) 由维数公式知 dimQ Q(
√
2,
√
3) = dimQ Q(

√
2) · dimQ(

√
2) Q(

√
2,
√
3) = 2× 2 = 4，结合维数公式的

证明知，Q(
√
2,
√
3) 有一组 Q-基 {1,

√
2,
√
3,
√
6}

评价 由 Galois 对应知，Q(
√
2,
√
3) 的所有子域如下

Q(
√
2,
√
3)

Q
√
2 Q(

√
3) Q(

√
6)

Q
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因此，只需取 a ∈ Q(
√
2,
√
3)
∖
(Q(
√
2)∪Q(

√
3)∪Q(

√
6))，则 Q(

√
2,
√
3) = Q(a)，即 Q(

√
2,
√
3) 也是单

扩张

因为 ∀a ∈ Q(
√
2,
√
3), a = b + c

√
2 + d

√
3 + e

√
6, b, c, d, e ∈ Q，比如我们可以取 a =

√
2 +
√
3，则

Q(
√
2,
√
3) = Q(

√
2 +
√
3)

例 3.13 记 K = Q( 3
√
2, ω)，求 dimQK

解 考虑域扩张塔 Q ⊆ Q( 3
√
2) ⊆ Q( 3

√
2, ω) = K（或可以考虑 Q ⊆ Q(ω) ⊆ Q(ω, 3

√
2) = K），则

(1) dimQ Q( 3
√
2)：因为 x3 − 2 在 Q 上零化 3

√
2，且素数 p = 2，由 Eisenstein 判别法知，它在 Z[x] 上

不可约，进而在 Q[x] 上不可约，则 dimQ Q( 3
√
2) = deg(x3 − 2) = 3

(2) dimQ( 3√2) Q( 3
√
2, ω)，因为 x2 + x+ 1 在 Q( 3

√
2) 上零化 ω，且 x2 + x+ 1 只有虚根，故它在 Q( 3

√
2)

上无根，则它不可约，故 dimQ( 3√2) Q( 3
√
2, ω) = deg(x2 + x+ 1) = 2

(3) 由维数公式知 dimQ Q( 3
√
2, ω) = dimQ Q( 3

√
2) · dimQ( 3√2) Q( 3

√
2, ω) = 3× 2 = 6，因为 Q( 3

√
2) 有一组

Q-基 {1, 3
√
2, 3
√
4}，Q( 3

√
2, ω) 有一组 Q( 3

√
2)-基 {1, ω}，所以 Q( 3

√
2, ω) 有一组 Q-基

{1, 3
√
2,

3
√
4, ω,

3
√
2ω,

3
√
4ω}

Ex 设 K/k 是有限维域扩张，α ∈ K 在 k 上的最小多项式为 f(x)，求证 deg f | dimkK

Ex P111 1, 4, 7, 10, 11

定义 3.2.2（有限生成的域扩张）称 K/k 有限生成，若 ∃α1, · · · , αn ∈ K, s.t. K = k(α1, · · · , αn)，此
时有域扩张塔

k ⊆ k(α1) ⊆ k(α1, α2) ⊆ · · · ⊆ k(α1, · · · , αn) = K

Fact 域扩张 K/k 是有限维的 ⇐⇒ K/k 是代数扩张，且有限生成

证明 (=⇒) : 由引理3.2.1知，K/k 是代数扩张，通过数学归纳法可知 K/k 有限生成

(⇐=) : 由定义有域扩张塔 k ⊆ k(α1) ⊆ k(α1, α2) ⊆ · · · ⊆ k(α1, · · · , αn) = K，且由代数扩张知

dimk(α1),··· ,k(αi) k(α1, · · · , αi+1) < +∞，故

dimkK = dimk k(α1) · dimk(α1) k(α1, α2) · · · dimk(α1,··· ,αn−1) k(α1, · · · , αn) < +∞

□

Fact 设有域扩张塔 k ⊆ E ⊆ K，则 K/k 是代数扩张 ⇐⇒ K/E,E/k 均为代数扩张

证明 (=⇒) : 根据定义验证即可，由于 K/k 是代数扩张，所以 ∀α ∈ K, ∃f(x) ∈ k[x], s.t. f(α) = 0，由

E ⊆ K, k[x] ⊆ E[x] 知，K/E,E/k 均为代数扩张

(⇐=) : 设 α ∈ K/k，若 α ∈ E，由 E/k 是代数扩张知 α 在 k 上代数，下设 α ∈ K\E，因为 K/E

是代数扩张，所以 ∃ui ∈ E, s.t. αn + un−1α
n−1 + · · ·+ u1α+ u0 = 0，设 E′ = k(un−1, · · · , u0) ⊆ E，则

α 是 E′ 的代数元，考虑域扩张塔 k ⊆ E′ ⊆ E′(α)，由上一个 Fact 以及 (=⇒) 知，E′ = k(un−1, · · · , u0)
是有限生成代数扩张，故 E′/k 是有限维的，另一方面因为 α 在 E′ 上代数，所以 E′(α)/E′ 是有限维的，

进而 E′(α)/k 也是有限维的，由上一个事实知 α 是 k 上的代数元，故 K/k 是代数扩张 □
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Fact（代数闭包）对任意域扩张 K/k，定义 E = {α ∈ K|α在K上代数}，则 E ⊆ K 是子域，称 E 为

k 在 K 中的代数闭包，此时有域扩张塔 k ⊆ E ⊆ K，且 K\E 中没有代数元

证明 只需证明 ∀α, β ∈ E,α + β, αβ, α−1 ∈ E，考虑域扩张塔 k ⊆ k(α) ⊆ k(α, β)，则由上一个事实知，

k(α, β)/k 是代数扩张，故 α+ β, αβ, α−1 在 k 上代数 □

评价 考察域扩张 K/k，若 α ∈ K 在 k 上的最小多项式为 f(x), deg(f(x)) = d，则 α−1 在 k 上的最小

多项式为 xdf( 1
x
)

例 3.14 考察域扩张 C/Q，则 Q = {α ∈ C|α是Q上的代数元} 是域，称为 Q 的代数闭包，此时有域扩张
塔 Q ⊆ Q ⊆ C

评价 Q 是可数域，考虑将 Q 中元素与它的最小多项式做对应，注意多项式的根集是有限集

例 3.15 R = C

定义 3.2.3（代数封闭域）称域 K 为代数封闭域，若任意代数扩张 K ⊆ E 均为平凡的，即 K = E

命题 3.2.1（代数封闭域的等价表述）

K是代数封闭域 ⇐⇒ 任意不可约多项式f(x) ∈ K[x], deg(f) = 1

⇐⇒ 任意f(x) ∈ K[x]在K上完全分裂，即f(x)可分解为一次多项式的乘积

Fact 代数封闭域必为无限域

证明 假设 |K| < +∞，则 f(x) =
∏
λ∈K

(x− λ) + 1K ∈ K[x] 在 K 上无根，因此 f 不可分解为 K[x] 上一

次多项式的乘积，与 K 是代数封闭域矛盾 □

定理 3.2.2（代数基本定理） C 是代数封闭域，即 ∀f(x) ∈ C[x] 首一，∃z1, · · · , zn ∈ C, s.t. f(z) =
(z − z1) · · · (z − zn)

§ 3.3 分裂域
本节关键引理如下

引理 3.3.1（关键引理）
α ∈ E E′

k k′σ
∼

设有域扩张 E/k,E′/k′ 以及域同构 σ : k
∼−→ k′，设 α ∈ E 在 k 上的最小多项式 f(x) = xn +

an−1x
n−1 · · ·+ a1x+ a0，令 σ(f)(x) = xn + σ(an−1)x

n−1 + · · ·+ σ(a1)x+ σ(a0) ∈ k[x]，由域同态知
σ(f)(x) ∈ k′[x] 不可约，则
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(1) 若 β ∈ RootE′(σ(f))，即 σ(f)(β) = 0E′，则存在唯一的 σ 的延拓 σ̃（即 σ̃|k = σ）

σ̃ : k(α)
∼−→ k′(β)

α 7−→ β

(2) 恰有 |RootE′(σ(f))| 个延拓 σ̃ : k(α) ↪−→ E′，使得 σ̃|k = σ

评价 |RootE′(σ(f))| ≤ deg(σ(f)) = deg(f) = dimk k(α)

证明 (1) 至多唯一性：给定 β ∈ RootE′(σ(f)), σ̃ 至多唯一，这是因为 σ̃|k = σ，且 k(α) 的 k-基
{1, α, · · · , αn−1} 在 σ̃ 下的像由 σ̃(α) = β 决定，即 σ̃(αi) = βi

存在性：考虑域同态 σ : k
∼−→ k′ 诱导的环同构（仍记为 σ）σ : k[x]

∼−→ k′[x], x 7→ x，我们有理想

对应关系 (f(x)) 7−→ (σ(f)(x))，进而有环同构（记为 σ，由 f(x), σ(f)(x) 不可约知，这是域同构）

σ : k[x]/(f(x)) −→ k′[x]/(σ(f)(x))

x 7−→ x

另一方面，由单扩张结构定理知3.1.2，存在域扩张的同构

ψ : k[x]/(f(x)) −→ k(α)

x 7−→ α

φ : k′[x]/(σ(f)(x)) −→ k′(β)

x 7−→ β

进而我们有域同构 σ̃ = φ ◦ σ ◦ ψ−1

σ̃ : k(α)
∼−→ k′(β)

α 7−→ β

即下面的图交换

k(α) k[x]/(f(x))

k′(β) k′[x]/(σ(f)(x))

σ̃

ψ

σ

ϕ

(2) 对 ∀σ̃ : k(α) ↪−→ E′，若 σ̃|k = σ，由下面的练习知 σ̃(α) ∈ RootE′(σ(f))，且对于每个 β ∈
RootE′(σ(f)) 都有唯一一个对应的延拓，故恰有 |RootE′(σ(f))| 个这样的延拓 □

Ex 证明 σ̃(α) ∈ RootE′(σ(f))

定义 3.3.1（分裂域）设 f(x) ∈ k[x]，f(x) 在 k 上的分裂域是指域扩张 E/k 满足

(1) f(x) 在 E 上分裂，即 f(x) 可分解为线性多项式的乘积 f(x) = (x−α1) · · · (x−αn), αi ∈ E, ∀i
(2) E = k(α1, · · · , αn)，即 E 是包含 α1, · · · , αn 的最小子域

评价 考虑域扩张塔 k ⊆ k(α1) ⊆ · · · ⊆ k(α1, · · · , αn)，由维数公式知 dimk E < +∞

Fact ∀f(x) ∈ k[x] 的分裂域一定存在
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证明 Case 1. 若 f(x) 在 k 上分裂，取 E = k

Case 2. 设 f(x) 在 k 上有不可约分解 f(x) = f1(x) · · · fn(x), fi 不可约，deg(fi(x)) ≥ 2，取 E1 =

k[x]/(f(x))，由添根构造知 f1(x) 在 K1[x] 上有根 u = x，故 K1 中有 f1(x) = (x − u)h1(x)，则

f(x) = (x − u)h1(x)f2(x) · · · fn(x) in K1，对 f ′(x) = h1(x)f2(x) · · · fn(x) 同上操作知，f(x) 的分裂域
E/k 一定存在 □

评价 从上述证明过程中可以看出，f(x) 的分裂域 E/k 不一定存在

例 3.16 设 f(x) ∈ Q[x], f(x) = (x− z1) · · · (x− zn), zi ∈ Q，记 E = Q(z1, · · · , zn) ⊆ Q，则 E/Q 是 f(x)

的分裂域

例 3.17 (x2 − 2)(x2 − 3) ∈ Q[x] 的分裂域为 Q(
√
2,
√
3)/Q

例 3.18 x3−2 = (x− 3
√
2)(x− 3

√
2ω)(x− 3

√
2ω2) ∈ Q[x] 的分裂域为 E = Q( 3

√
2, 3
√
2ω, 3
√
2ω2) = Q( 3

√
2, ω)

Ex 考虑域扩张 F2 ↪−→ F2[x]/(x
2 + x+ 1)

def
= F4，证明 F4/F2 是 x2 + x+ 1 ∈ F2[x] 的分裂域

Ex 考虑域扩张 F3 ↪−→ F3[x]/(x
2+1)

def
= F9，证明 F9/F3 是 x2+1 ∈ F3[x]的分裂域，也是 x2+2x+2 ∈

F3[x] 的分裂域

定理 3.3.1 给定域同构 σ : k
∼−→ k′, f(x) ∈ k[x], σ(f)(x) ∈ k′[x]，设 E/k 是 f(x) 的某个分裂域，

E′/k′ 是 σ(f)(x) 的某个分裂域，则 σ 可延拓到域同构 δ : E
∼−→ E′，且 δ|k = σ，这样的域同构 δ

至多有 dimk E = dimk′ E
′ 个

证明 对 dimk E 进行归纳

Case 1. 若 dimk E = 1，此时有同构 k
∼−→ E，且 f(x) 在 k 上分裂，故 σ(f)(x) 在 k′ 上分裂，故

E′/k′ 平凡，取 δ = σ 即可

Case 2. 若 dimk E > 1，设 f(x) = (x−α1) · · · (x−αn), αi ∈ E, ∀i，由 dimk E > 1，可不妨设 α1 /∈ k，
则 α1 在 k 上的最小多项式 g(x) ∈ k[x] 的次数 deg g ≥ 2，且有 g(x) | f(x)，设 f(x) = g(x)h(x) in k[x]

（g(x) 可能等于 f(x)），则 σ(f) = σ(g)σ(h) in k′[x]，由 σ(f) 在 E′ 中分裂知 σ(g) 在 E′ 中也分裂，故

RootE′(σ(g)(x)) 6= ∅，任取 β1 ∈ RootE′(σ(g)(x))，由关键引理知 σ 可延拓至域同构

σ1 : k(α)
∼−→ k′(β1)

α1 7−→ β1

易见 E/k(α1) 是 f(x) ∈ k(α)[x] 上的分裂域，E′/k′(β1) 也是 σ(f)(x) 在 k′(β1)[x] 上的分裂域，又因为

dimk(α1)E = dimk E
dimk k(α)

< dimk E，由数学归纳法知 σ1 可延拓至域同构 δ : E
∼→ E′，且这样的域同构 δ

至多有 dimk(α1)E 个，而 σ 延拓得到的 σ1 至多有 |RootE′(σ(g))| ≤ deg(g(x)) = dimk k(α1) 个，故这样

的域同构 δ 至多有 dimk k(α1) · dimk(α1)E = dimk E 个 □

由定理3.3.1立得分裂域的唯一性以及域扩张的自同构群大小的估计

推论 3.3.1 取 k′ = k, σ = Idk，则
(1) f(x) ∈ k[x] 的分裂域在同构意义下唯一
(2) 取 E = E′，则 |Aut(E/k)| ≤ dimk E
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例 3.19 由例3.13和例3.18知 x3 − 2 ∈ Q[x] 的分裂域为 E = Q( 3
√
2, ω), dimQE = 6，求 Aut(E/Q) =

Aut(E)（这是因为 Q 上的自同构只有 IdQ）

解 首先有 |Aut(E)| ≤ dimQE = 6，考虑域扩张塔 Q ⊆ Q( 3
√
2) ⊆ Q( 3

√
2, ω) = E

(1) 因为 RootE(x3 − 2) = { 3
√
2, 3
√
2ω, 3
√
2ω2}，所以 IdQ 有三个延拓

• β1 =
3
√
2, σ1 : Q( 3

√
2)→ Q( 3

√
2), 3
√
2 7→ 3

√
2

• β2 =
3
√
2ω, σ2 : Q( 3

√
2)→ Q( 3

√
2ω), 3

√
2 7→ 3

√
2ω

• β3 =
3
√
2ω2, σ3 : Q( 3

√
2)→ Q( 3

√
2ω2), 3

√
2 7→ 3

√
2ω2

(2) 在 Q( 3
√
2)上，ω 的最小多项式为 x2+x+1，因为 RootE(x2+x+1) = {ω, ω2}，所以每个 σi, i = 1, 2, 3

均有两个延拓，记为 δij , j = 1, 2，具体如下

• σ1 有两个延拓 δ11 : E → E,ω 7→ ω, δ12 : E → E,ω 7→ ω2

• σ2 有两个延拓 δ21 : E → E,ω 7→ ω, δ22 : E → E,ω 7→ ω2

• σ3 有两个延拓 δ31 : E → E,ω 7→ ω, δ32 : E → E,ω 7→ ω2

进而我们有 δij ∈ E, i = 1, 2, 3, j = 1, 2，且由 |Aut(E)| = 6 知，Aut(E) = {δij |i = 1, 2, 3, j = 1, 2}，
以 IdQ → σ2 → δ22 为例，有交换图如下

E = Q( 3
√
2)(ω) E = Q( 3

√
2ω)(ω2)

Q( 3
√
2) Q( 3

√
2ω)

Q Q

∼
δ22:ω 7→ω2

∼
σ2:

3√2 7→ 3√2ω

IdQ

Ex 求 δ−1
ij , i = 1, 2, 3, j = 1, 2，并求 Aut(E) 的乘法表

Ex 仿照上面过程，求

(1) Aut(Q(
√
2,
√
3)/Q)

(2) Aut(F4/F2)，这里 F4
def
= F2/(x

2 + x+ 1)

Ex 证明

(1) |Aut(Q( 3
√
2)/Q)| < dimQ Q( 3

√
2)

(2) 证明不存在 δ : Q( 4
√
2)→ Q( 4

√
2) 使得图交换

Q( 4
√
2) Q( 4

√
2)

Q(
√
2) Q(

√
2)

∄δ

σ

θ θ

其中 σ(a+ b
√
2) = a− b

√
2

结合定理3.3.1，我们知道 σ 的延拓至多有 dimk E 个，结合上面的习题知这不一定取等，接下来我

们讨论何时取等，即 σ 的延拓何时有 dimk E 个
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定义 3.3.2（重根）称 0 6= f(x) ∈ k[x] 有重根，若存在域扩张 E/k 和 a ∈ E, s.t. (x− a)2 | f(x)

评价 (1) (x− a)2 不一定在 k[x] 中

(2) f(x) ∈ k[x] 无重根指的是对任意域扩张 E/k，f(x) 在 E[x] 中均不存在二重线性因子

例 3.20 f(x) = (x2 + 1)2 ∈ R[x] 有重根

Ex 设 k = Fp(t)，证明 f(x) = xp − t ∈ k[x] 不可约，但是有重根

定义 3.3.3（形式微商）设 f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ k[x]，称

f ′(x) = nanx
n−1 + · · ·+ a1 ∈ k[x]

为 f(x) 的形式微商

评价 deg(f ′(x)) ≤ deg(f(x))− 1，可以不取等，考虑 k = Fp, f(x) = xp ∈ k[x]

定理 3.3.2（Leibniz 法则）对 ∀f(x), g(x) ∈ k[x]，则

(
f(x)g(x)

)′
= f ′(x)g(x) + g′(x)f(x)

引理 3.3.2 f(x) ∈ k[x] 有重根 ⇐⇒ gcdk[x](f, f ′) 6= 1

证明 (=⇒) : 设 k ↪−→ E，在 E 中有 f(x) = (x− a)2h(x)，则 f ′(x) = 2(x− a)h(x) + (x− a)2h′(x)，所
以 x− a | gcd(f, f ′)，进而 gcdk[x](f, f ′) 6= 1

(⇐⇒) : 设 gcdk[x](f, f ′) = g(x) 6= 1，取 K 为 g(x) 的分裂域，则 ∃a ∈ K, s.t. x− a | g(x) in K[x]，

故在 K[x] 中可设 f(x) = (x − a)h(x)，所以 f ′(x) = h(x) + (x − a)h′(x) in K[x]，由 x − a | f ′(x) 知，

x− a | h(x)，进而 (x− a)2 | h(x) in K[x] □

推论 3.3.2 f(x) ∈ k[x] 无重根 ⇐⇒ gcdk[x](f, f ′) = 1

定义 3.3.4（可分）称 f(x) ∈ k[x] 在 k 上可分，若 f(x) 的不可约因子均无重根

Ex 设有域扩张 K/k，若 f(x) ∈ k[x] 在 k 上可分，则 f(x) 在 K 上也可分

命题 3.3.1 若 Char(k) = 0，则 ∀f(x) ∈ k[x] 可分

证明 只需证明任意 k[x] 上的不可约多项式 f(x) 均无重根，设 f(x) = anx
n + · · · + a1x + a0 ∈ k[x] 不

可约，由 Char(k) = 0 知，nan 6= 0，故 deg(f ′) = deg(f)− 1，且 f(x) 非常值多项式，f ′(x) 6= 0，由带

余除法知

gcdk[x](f.f ′) = 1

由推论3.3.2知，f(x) 在 k 上可分 □

54



近世代数 (H) 课堂笔记 § 3.4 有限域

接下来我们可以回答：σ 的延拓有 dimk E 个的充要条件是 f(x) ∈ k[x] 可分

定理 3.3.3 设 f(x) ∈ k[x]，E 为 f 的分裂域，则 f(x) 在 k 上可分 ⇐⇒ |Aut(E/k)| = dimk E

证明 (=⇒) : 对 |Aut(E/k)| 归纳，|Aut(E/k)| = 1 时平凡，当 |Aut(E/k)| ≥ 2 时，设 f(x) = (x −
α1) · · · (x− αn)，由 |Aut(E/k)| ≥ 2 知，可不妨设 α1 /∈ k

E E

k(α1) k(β)

k k

δ̃

δ

α1 7→β

设 α1 在 k 上的最小多项式为 g(x)，则 g(x) 不可约且由 f(x) 可分，g(x) | f(x) 知 g(x) 无重根，故

|RootE(g(x))| = deg(g(x))，类似关键引理的证明知 Idk 共有 |RootE(g(x))| = deg(g(x)) 个延拓，又
因为 f(x) 在 k 上可分 =⇒ f(x) 也在 k(α1) 上可分，故给定 Idk 的延拓 σ : k(α1) → k(β)，其中

β ∈ RootE(g(x))，由数学归纳法知 σ 共有 dimk(α1)E 个延拓，而这样的 σ 共有 deg(g(x)) = dimk k(α1)

个，因此

|Aut(E)/k| = dimk k(α1) · dimk(α1)E = dimk E

(⇐=) : 反证，假设 f(x) ∈ k[x] 在 k 上不可分，则存在某个 αi，它在 k 上的最小多项式 g(x) 有重

根，不妨设为 α1，则同上过程知 Idk 到 k(α1) 的延拓个数为 |RootE(g(x))| < deg(g(x)) = dimk k(α1)，

因此

dimk E = dimk k(α1) · dimk(α1)E > |Idk到k(α1)的延拓| · dimk(α1)E ≥ |Aut(E/k)|

这与 |Aut(E/k)| = dimk E 矛盾！ □

§ 3.4 有限域
有限域指的是阶有限的域，由于域是整环，整环的特征为零或素数 p，且特征为零的域一定是无限

域，故若 |E| < +∞，则存在素数 p 使得 Char(E) = p

Fact 若 Char(E) = p，则 ∀a ∈ E, pa = 0E

命题 3.4.1（有限域的阶）设 E 为有限域，则存在唯一素数 p 以及特征同态

ϕ : Fp ↪−→ E

1 7−→ 1E

因此有域扩张 E/Fp，且 E 是 Fp-线性空间，由 |E| < +∞ 知，可设 dimFp
E = n，则有线性同构

E ' Fpn，即 |E| = pn
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评价 当 n = 1 时，E ' Fp

定义 3.4.1（Frobenius 自同构）设 Char(E) = p，称

σ : E −→ E

a 7−→ ap

为 E 上的 Frobenius 自同构，以下的 σ 均指 Frobenius 自同构

Fact σ ∈ Aut(E)，即 Frobenius 自同构确实是域自同构

证明 验证同态，乘法显然，对于加法

σ(a+ b) = (a+ b)p = ap +

(
p

1

)
ap−1b+ · · ·+

(
p

p− 1

)
abp−1 + bp = ap + bp = σ(a) + σ(b)

下验证双射，因为 |E| = |E|，故只需验证单射，若 σ(a) = σ(b)，则 σ(a− b) = (a− b)p = 0 =⇒ a− b = 0，

即 a = b

□

评价 Fermat 小定理：若 (a, p) = 1，则 ap ≡ a mod p，因此 σ|Fp
= IdFp

例 3.21 考虑 F4 = F2[x]/(x
2 + x+ 1) =

{
0 1

u u+ 1

}
，则


σ|F2

= IdF2

σ(u) = u2 = u+ 1

σ(u+ 1) = u2 + 1 = u

=⇒ σ2 = IdF4

由于 |Aut(F4/F2)| ≤ dimF2
F4 = deg(x2 + x+ 1) = 2，且有 IdF4

, σ ∈ Aut(F4/F2)，故

Aut(F4/F2) = {IdF4
,Aut(F4/F2)}

Ex 考虑 F9 = F3[x]/(x
2 + 1) =


0 1 2

u u+ 1 u+ 2

2u 2u+ 1 2u+ 2

，证明 Aut(F9/F3) = {IdF9
, σ}

Fact 设 |E| = pn，定义 E× = E\{0E} 为 E 的单位群，我们有 |E×| = pn − 1

引理 3.4.1 对 ∀a ∈ E×，总有 ap
n−1 = 1 或 ap

n

= a

证明 考虑

(a) = {1, a, a2, · · · , am, · · · }

由 |E| < +∞ 知，一定 ∃i < j, s.t. ai = aj，故 aj−i = 1，取 d = min{m|am = 1}，则 {1, a, a2, · · · , ad−1}
两两不同，且为 E× 的子群，由群论的 Lagrange 定理4.1.2，d | pn − 1，所以 ap

n−1 = 1 □

56



近世代数 (H) 课堂笔记 § 3.4 有限域

推论 3.4.1 σn = IdE

证明 对 ∀a ∈ E
σn(a) = (((a)p)

p · · · )p = ap
n

= a

□

定理 3.4.1 对 ∀n ∈ N∗ 以及素数 p，存在唯一 pn 阶有限域，记作 Fpn

证明 至多唯一性：若 E = pn，我们断言 E/Fp 是 xp
n − x ∈ Fp[x] 的分裂域

Proof Of Claim : ∀a ∈ E, a ∈ RootE(xp
n − x)，即

xp
n

− x =
∏
a∈E

(x− a) in E[x]

又因为 xp
n − x 的分裂域至少包含它的所有根（且它的 pn 个根两两不同），即有 pn 个元素，且 |E| = pn

满足分裂域的最小性，故 E/Fp 是 xp
n − x ∈ Fp[x] 的分裂域，由分裂域在同构意义下唯一即证

存在性：设 E/Fp 为 xp
n − x 的分裂域，由引理3.2.1知 E/Fp 是有限维域扩张，故 |E| < +∞，我

们取 K = {a ∈ E|apn = a} = {a ∈ E|σn(a) = a}，只需证明如下断言
(1) K ⊆ E 是子域
(2) xp

d − x 无重根
(3) K = E

□

Ex 补全上面的证明

推论 3.4.2 给定 Fpn，我们有
xp

n

− x =
∏
a∈Fpn

(x− a)

评价 特别地，当 n = 1 时，xp − x = x(x − 1) · · · (x − p− 1) 或 xp−1 − x = (x − 1) · · · (x − p− 1)，取

x = 0 即得 Wilson 定理
(p− 1)! ≡ −1 mod p

命题 3.4.2 在 Fp[x] 中有
xp

n

− x =
∏
d|n

∏
deg(f)=d

f 首一不可约
每个只出现一次

f(x)

证明 一方面，取 f(x) ∈ Fp[x] 不可约，且 f(x) | xpn − x，下证 deg d | n：因为 f(x) 在 Fpn 中分裂，所
以 ∃a ∈ Fpn , s.t. f(a) = 0，考虑域扩张塔

Fp ⊆ Fp(a) ⊆ Fpn
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由维数公式知 deg(f) = dimFp
Fp(a) | dimFp

Fpn = n

另一方面，对于 ∀d | n, ∀d 次首一不可约多项式 g(x) ∈ Fp[x]，下证 g(x) | xpn − x：考虑添根构造
Fp ↪−→ Fp/(g(x))

def
= K，因为 dimFp

K = deg(g(x)) = d，所以 |K| = pd，由引理3.4.1知，x def
= u ∈ K 满

足 up
d − u = 0，且 g(x) 为 u 的最小多项式，故

g(x) | xp
d

− x | xp
n

− x

□

例 3.22 当 p = 2 时，取 n = 2, 3, 4，则

• x2
2 − x = x(x+ 1)(x2 + x+ 1)

• x2
3 − x = x(x+ 1)(x3 + x2 + 1)(x3 + x+ 1)

• x2
4 − x = x(x+ 1)(x2 + x+ 1)(x4 + x+ 1)(x4 + x3 + x+ 1)(x4 + x3 + x2 + x+ 1)

Ex 在 F3[x] 中分解 x3
2 − x

命题 3.4.3（有限域的子域）取定有限域 E, |E| = pn，则

(1) 若 K ⊆ E 是子域，则 ∃d | n, s.t. |K| = pd

(2) 对 ∀d | n，存在唯一 pd 阶子域 K ⊆ E
(3) 记 E 的 pd 阶子域为 Kd，则 Kd1 ⊆ Kd2 ⇐⇒ d1 | d2

证明 (1) 考虑域扩张塔 Fp ⊆ K ⊆ E，由维数公式易证
(2) 至多唯一性：设有子域 K ⊆ E 满足 |K| = pd，则由引理3.4.1知 ∀a ∈ K, ap

d − a = 0，则 K ⊆
RootE(xp

d − x)，因为 xp
d − x | xpn − x，且两边元素一样，故 K = RootE(xp

d − x) 存在性：取
K = RootE(xp

d − x) = {a ∈ E|apd = a} = {a ∈ E|σd(a) = a}，只需证明如下断言
• xp

d − x 在 E 上分裂

• xp
d − x 无重根

• K 是子域

(3) 这是自然的推论

□

Ex 补全上面的证明

例 3.23 |E| = 26，记 K6 = E,K1 = F2，由命题3.4.3知 E 存在唯一 22, 23 阶子域 K2 = RootE(x2
2 −

x),K3 = RootE(x2
3 − x)

K6 = E

K2 ' F22 K3 ' F23

K1 = F2

Ex 设 |E| = Fpn，n 有素因子分解 n = pe11 · · · pess ，则 E 有 s 个极大真子域 K n
pi
, |K n

pi
| = p

n
pi，求证∣∣∣∣∣

s⋃
i=1

K n
pi

∣∣∣∣∣ < |E|
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推论 3.4.3 Fpn/Fp 是单扩张，且 Fp[x] 上总有 n 次不可约多项式

证明 由上面的练习，任取 u ∈ E\
s⋃
i=1

K n
pi
，我们有 Fpn = Fp(u)，即 Fpn/Fp 是单扩张，且 u 在 Fp[x] 上

的最小多项式次数为 n □

Ex 设 |E| = pn，记 E 的 pd 阶子域为 Kd，求证

(1) Kd1 ∩Kd2 = Kgcd(d1,d2)

(2) 记 Kd1 ∨Kd2 为包含 Kd1 ∪Kd2 的最小子域，则 Kd1 ∨Kd2 = Klcm(d1,d2)

命题 3.4.4
Aut(E/Fp) =< σ >

证明 因为 Fp 上的自同构只有 IdFp
，所以 Aut(E/Fp) = Aut(E)，且由推论3.4.1知 σn = IdE，下证

{IdE , σ, · · · , σn−1} 两两不同，取3.4.3证明过程中的 u ∈ E，我们断言 {u, σ(u), · · · , σn−1(u)} 两两不同
Proof Of Claim : 只需证 ∀1 ≤ i ≤ n− 1, σi(u) 6= u

如不然，取最小的 d ≤ n− 1, s.t. σd(u) = u，设 n = qd+ r, r < d，则

u = σn(u) = σr ◦

q个︷ ︸︸ ︷
σd ◦ · · · ◦ σd(u) = σr(u)

由 d 的最小性知 r = 0，故 d | n，但此时有 u ∈ RootE(xp
d − x) = Kd，这与 u 的取法矛盾！进而有

∀0 ≤ i < j ≤ n−1, σi(u) 6= σj(u)，即断言得证，则 {IdE , σ, · · · , σn−1} 两两不同，由于 |Aut(E/Fp)| ≤ n，
且 < σ >⊆ Aut(E/Fp)，所以 Aut(E/Fp) =< σ > □

命题 3.4.5 设 |E| = pn，对 n 次不可约多项式 f(x) ∈ Fp[x]，取 u ∈ RootE(f(x))，则

f(x) =

n−1∏
i=0

(x− σi(u))

证明 同3.4.4的证明知 σi(u), 0 ≤ i ≤ n− 1 两两不同，且它们均为 f(x) 的根 □

评价 此时 E 也是 n 次不可约多项式 f(x) 的分裂域

Fact 对 ∀d | n，记
Hd = {IdE , σd, · · · , σn−d} =< σd >

则 Hd 是 Aut(E) 的子群，且它是 Aut(E) 唯一的 n
d
阶子群 Hd

定理 3.4.2（有限域的 Galois 对应）取定有限域 E, |E| = pn，则存在双射

{K|K
子域

⊆ E} 1:1←→ {Aut(E)的子群}

Kd 7−→ Hd
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评价 实际上

Hd = Aut(E/Kd) = {δ ∈ Aut(E) : δ|Kd
= IdKd

}

§ 3.5 分圆域

定义 3.5.1（单位根）设 k 是域，称 ω ∈ k 是 n 次单位根，若 ωn = 1k，若 d 是最小的正整数使得

ωd = 1k，则称 ω 为 d 次本原单位根，且记 d = Ord(ω)

Fact 设 Ord(ω) = d，则

(1) ωn = 1k ⇐⇒ d | n
(2) k× = k\{0k} 有 d 阶子群 Rootk(xd − 1) = {1, ω, · · · , ωd−1} ≤ k×

Ex 设 Ord(ω) = d,Char(k) = p > 0，证明 p - d

定理 3.5.1 对任意域 k，任意 d 阶子群 H ≤ k×，存在 d 次本原单位根 ω, s.t.

H = {1, ω, · · · , ωd−1} =< ω >

且这样的 H 唯一

证明 至多唯一性：H = Rootk(xd − 1)

存在性：即证明 H 是循环群，小伍：难！我们先承认它 □

推论 3.5.1 设 E 是有限域，|E| = pn，则 E× = E\{0E} 是 pn − 1 阶循环群，因为存在 pn − 1 次

本原单位根 ω ∈ E×，此时有

(1) E× = {1, ω, · · · , ωpn−2}
(2) Fp(ω) = E

定义 3.5.2（复单位根）对 ∀n ≥ 2，定义 ζ = ζn = e
2πi
n ，则

RootC(xn − 1) = {1, ζ, · · · , ζn−1} ≤ Cx

是 Cx 唯一的 n 阶子群

Fact（复）n 次本原单位根共有 φ(n) 个

证明 这是因为 ∀1 ≤ m < n,Ord(ζm) = n
gcd(m,n) □

定义 3.5.3（分圆域）这 ζn 为 n 次复单位根，则 Q(ζn)/Q 恰为 xn − 1 的分裂域，称为第 n 个分圆

域

例 3.24 Q(ζ2) = Q

60



近世代数 (H) 课堂笔记 § 3.5 分圆域

Q(ζ3) = Q
(

−1+
√
−3

2

)
= Q(

√
−3)

Q(ζ4) = Q(
√
−1)

Q(ζ5) ⊃ Q(
√
5)

定义 3.5.4（分圆多项式）称

Φn(x) =
∏

ω是 n 次本原

(x− ω) =
∏

1≤m≤n−1
gcd(m,n)=1

(x− ζmn )

为第 n 个分圆多项式，补充定义 Φ1(x) = x− 1，由表达式易知 deg(Φn(x)) = φ(n)

引理 3.5.1
xn − 1 =

∏
d|n

Φd(x) 或 Φn(x) =
xn − 1∏

d<n
d|n

Φd(x)

证明 记 Sd = {ζ
n
d ·k
n |1 ≤ k ≤ d, gcd(d, k) = 1} 为 d 次单位根的集合，因为 ∀k,Ord(ζkn) | n，且我们有分

拆 {1, ζn, · · · , ζn−1
n } =

⊔
d|n
Sd，所以

xn − 1 =
n−1∏
i=0

(x− ζin) =
∏
d|n

∏
ω∈Sd

(x− ω) =
∏
d|n

Φd(x)

例 3.25 Φ2(x) =
x2−1
x−1

= x+ 1

Φ3(x) =
x3−1
x−1

= x2 + x+ 1

Φ4(x) =
x4−1

(x−1)(x+1)
= x2 + 1

对于素数 p，Φp(x) =
xp−1
x−1

= xp−1 + · · ·+ x+ 1

Fact ∀n ∈ N∗,Φn(x) ∈ Z[x]

证明 n = 1 时 Φ1(x) = x − 1 ∈ Z[x]，当 n > 1 时，使用数学归纳法，设 ∀m < n,Φm(x) ∈ Z[x]，下证
Φn(x) ∈ Z[x]，因为 Φn(x) =

xn−1∏
d<n
d|n

Φd(x)
，且 f(x)

def
=
∏
d<n
d|n

Φd(x) ∈ Z[x]，且 f(x)Φn(x) = xn − 1，由下面的

练习知 Φn(x) ∈ Z[x]
□

Ex 设 f(x), g(x) ∈ Z[x], g(x) 首一，若 f(x) = g(x)h(x), g(x) ∈ C[x]，证明 h(x) ∈ Z[x]

定理 3.5.2（Gauss/Kronecker）分圆多项式 Φn(x) ∈ Z[x] 不可约

证明 取 ζn 的最小多项式 f(x) ∈ Z[x]，则 f(x) 本原且 f(x) | Φn(x) in Q[x]

Claim：Claim：Claim：若素数 p - n，若 f(z) = 0，则 f(zp) = 0
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Proof Of Claim : 反证法，假设 f(zp) 6= 0，设 zp 的最小多项式 g(x) ∈ Z[x]，则 g(x) 本原，由 f, g

不可约，且 f 6= g 知，gcd(f, g) = 1，因此可设 xn − 1 = f(x)g(x)h(x)；此外我们有 g(zp) = 0 =⇒ z 被

g(xp) 零化 =⇒ f(x) | g(xp)，考虑模 p 约化

ψ : Z[x] −→ Fp[x]

x 7−→ x

a 7−→ a

设 g(x) = bmx
m + · · ·+ b1x+ b0，则

ψ(g(xp)) = b
p

mx
pm + · · ·+ b

p

1x
p + b

p

0

= bmx
pm + · · ·+ b1x

p + b0

ψ(g(x))p = (bmx
m)p + · · ·+ (b1x)

p + b
p

0

= bmx
pm + · · ·+ b1x

p + b0

所以 ψ(g(xp)) = ψ(g(x))p，由 f(x) | g(xp) 知，ψ(f(x)), ψ(g(xp)) = ψ(g(x))p 有相同的不可约因子，设

为 a(x)，所以 a(x) | ψ(f(x)) | ψ(xn − 1)

a(x) | ψ(g(x))p | ψ(xn − 1)

即 ψ(xn − 1) = xn − 1 ∈ Fp[x] 有重根，但是 gcd(xn − 1, nxn−1) = 1，矛盾！

因此断言得证，下面证明每个本原单位根 ζkn, gcd(n, k) = 1 均为 f(x) 的根，对 k 做素因子分解

k = p1 · · · ps（相同素数可以重复出现），由 gcd(n, k) = 1 知 pi - n，反复利用断言

f(ζn) = 0 =⇒ f(ζp1n ) = 0 =⇒ f(ζp1p2n ) = 0 =⇒ · · · =⇒ f(ζp1···psn ) = f(ζkn) = 0

所以 deg(f(x)) = φ(n) = deg(Φn(x))，又因为 f(x) | Φn，所以 f(x) = Φn(x)，即 Φn(x) ∈ Z[x] 不可约
□

评价 由上述证明过程知，Φn(x) 是任意本原单位根 ζkn, gcd(n, k) = 1 的最小多项式

定理 3.5.3 (1) dimQ Q(ζn) = φ(n)

(2) 有群同构

φ : Aut(Q(ζn))
∼−→ U(Zn)

(σ : ζn 7→ ζmn ) 7−→ m

证明 (1). 这是定理3.5.2的推论
(2). 同态：设 gcd(n,m) = gcd(n, l) = 1, σ(ζn) = ζmn , τ(ζn) = ζ ln，则 τ ◦ σ(ζn) = τ(ζmn ) = ζmln ，且

gcd(n,ml) = 1，故 τ ◦ σ ∈ Aut(Q(ζn))，且 φ(τ ◦ σ) = ml = m · l = φ(τ)φ(σ)

双射：由于 |Aut(Q(ζn))| = |U(Zm)| = φ(n)，所以只需验证单射，因为 ∀σ ∈ Aut(Q(ζn)) 完全由
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σ(ζn) 决定，所以

σ ∈ Ker(φ) ⇐⇒ σ(ζn) = ζn

⇐⇒ σ = IdQ(ζn)

即 Ker(φ) = {IdQ(ζn)}，故 φ 为单射 □
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第四章 群

§ 4.1 群的定义

定义 4.1.1（群）设 G 为非空集合，· 为二元运算（一般是乘法），称二元组 (G, ·) 为群，若

· : G×G −→ G

(a, b) 7−→ a · b

满足下面三条公理

(G1) 结合律：(a · b) · c = a · (b · c)
(G2) 有幺元：∃1G ∈ G, s.t. ∀a ∈ G, 1G · a = a = a · 1G
(G3) 有逆元：∀a ∈ G, ∃b ∈ G, s.t. a · b = 1G = b · a，记 b = a−1

特别地，若群 G 称为 Abel 群，则对 ∀a, b ∈ G, a · b = b · a，即满足交换律

评价 为方便表示，也记 (G, ·) 为 G；a · b = ab

Ex 群 G 中幺元和逆元唯一！

Fact 给定群 (G, ·)，则
(1) 乘法消去律成立：若 a · b = a · c，则 b = c；若 b · a = c · a，则 b = c

(2) (a−1)−1 = a

(3) (ab)−1 = b−1a−1

Proof : (b−1a−1)(ab) = b−1(a−1a)b = b−1b = 1G

(4) ∀n ∈ Z，定义 an 为

an =


n个︷ ︸︸ ︷

a · a · · · a · a, n > 0

1, n = 0

(a−1)−n, n < 0

Ex 验证 am+n = am · an, ∀m,n ∈ Z

约定：我们约定加法群 (A,+) 为 Abel 群，二元运算写为 +，它满足

(A1) 结合律：∀a, b, c ∈ A, (a+ b) + c = a+ (b+ c)

(A2) 有零元：∃0A ∈ A, ∀a ∈ A, a+ 0A = a = 0A + a

(A3) 有负元：∀a ∈ A, ∃b ∈ A, s.t. a+ b = 0A = b+ a，且此时负元唯一，记 b = −a
(A4) 交换律：∀a, b ∈ A, a+ b = b+ a

例 4.1 (Z,+), (Q,+) 为加法群，(Q×, ·) 为乘法群
例 4.2（一般线性群） GLn(C) = {A ∈ Mn(C)| detA 6= 0}
例 4.3（特殊线性群） SLn(C) = {A ∈ Mn(C)| detA = 1}
例 4.4（正交群） On = {A ∈ GLn(R)|AAT = In}
例 4.5（特殊正交群） SOn = {A ∈ On| detA = 1}
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定义 4.1.2（子群）非空集合 H ⊂ G 称为 G 的子群，若

(1) 1G ∈ H
(2) 乘法封闭：∀a, b ∈ H, a · b ∈ H
(3) 取逆封闭：∀a ∈ H, a−1 ∈ H
记作 H ≤ G，特别地 (H, ·) 也为群

推论 4.1.1（子群的等价定义）

H ≤ G ⇐⇒ ∀a, b ∈ H, ab−1 ∈ H

评价 每个群 G 都有平凡子群 {1G} 和 G

例 4.6 On ≤ GLn(R) ≤ GLn(C)
例 4.7 GL1(C) = C×，它是 Abel 群，幺元是 1

例 4.8 给定含幺交换环 R，三个与 R 相关的群如下：

(1) 加法群：(R,+)

(2) 单位群：U(R)
def
= {u ∈ R|u可逆}，R 为交换环知，U(R) 是 Abel 群

(3) 自同构群：Aut(R) = {θ : R ∼→ R : θ是环自同构}，它的幺元是 IdR，乘法为映射的复合，如 f ◦ g，
且 ∀f ∈ Aut(R), f−1 就是 f 的逆映射

例 4.9 ∀n ≥ 2,Zn = Z/nZ
(1) 加法群：(Zn,+)

(2) 单位群：U(Zn)
def
= {m| gcd(m,n) = 1}，|U(Zn)| = φ(n)

(3) 自同构群：Aut(Zn) = {IdZn
}，平凡群

例 4.10 给定域扩张 K/k，它的自同构群

Aut(K/k) = {σ ∈ Aut(K)|σ(λ) = λ, ∀λ ∈ k} ≤ Aut(K)

定义 4.1.3（正交对称群） P ⊆ Rn，P 的正交对称群

Σ(P) = {g ∈ On|g(P) = P}

这里 g(P) = P 的意思为：À.∀v ∈ P , g(v) ∈ P；Á.∀v ∈ P , ∃u ∈ P , s.t. v = g(u)

∀g ∈ Σ(P)，称 g 为 P 的一个正交对称正交对称正交对称

例 4.11 n = 2 时，考虑圆心位于原点的圆周 S1 ⊆ R2，则任意一个正交变换都是圆周 S1 的正交对称，

即

Σ(S1) = O2

例 4.12 n = 2 时，考虑中心位于原点的正方形

Σ(□) = {g ∈ O2|g(□) = □}
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AB

C D

如图，考虑正方形的四个顶点组成的集合 V = {A,B,C,D} ⊆ □, ∀g ∈ Σ(□)A ∈ V ⇐⇒ |OA| =
√
2

|Og(A)| = |OA| =
√
2

=⇒ g(A) ∈ V

对 B,C,D 同理，因此 ∀g ∈ Σ(□), g(V ) = V，故 g 只能是旋转或者对称，若为旋转，则只能旋转

0◦, 90◦, 180◦, 270◦；若为对称，则 Ag(A) 的中垂线为对称轴，若 A = g(A)，即 A 在对称轴上，此时一

定有 C 在对称轴上。综上对称共有四种，对称轴为 x = 0, y = 0, y = x, y = −x

Ex 写出 Σ(□) 的 8 个矩阵

例 4.13 设 X 是一个抽象集合，称 σ 是 X 上的置换是指 X 到自身的双射

σ : X
1:1−→ X

记集合 X 的抽象对称群 (Symmatric group) 为

S(X) = {σ : σ是X上的置换}

评价 S(G) 有时过大，无法提供较多信息

例 4.14 Aut(R) ≤ S(R)，因此在同构意义下有 GLn(C) ≤ S(Cn)

定理 4.1.1（Cayley, 1878）任何群“本质上”都是某个对称群 S(X) 的子群，实际上对任意群 G，G

与 S(G) 的某个子群同构

定理 4.1.2（Lagrange, 1770）对任意有限群 G，若 H ≤ G，则

|H|
∣∣ |G|

评价 类比：考虑域扩张塔 k ⊆ E ⊆ K，则 dimk E | dimkK

证明 设 H ≤ G，对 ∀a ∈ G，定义右陪集

Ha
def
= {ha|h ∈ H} ⊆ G

Claim：Claim：Claim：Ha = Hb ⇐⇒ ab−1 ∈ H
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Proof Of Claim : (=⇒) 因为 a = ea ∈ Ha = Hb，则 ∃h ∈ H, s.t. a = hb，所以 ab−1 = h ∈ H
(⇐=) : 若 ab−1 ∈ H，则 ba−1 ∈ H，所以 ∀h ∈ H, ∃h′, h′′ ∈ H, s.t. h = h′ · ab−1, h = h′′ba−1，故hb = h′ab−1b = h′a ∈ Ha =⇒ Hb ⊆ Ha

ha = h′′ba−1a = h′′b ∈ Hb =⇒ Ha ⊆ Hb

即 Ha = Hb

定义 G 上的关系 a ≈ b ⇐⇒ Ha = Hb，由断言知它是一个等价关系，且 a 的关于 ≈ 的等价类为
Ha，因此我们得到了 G 的一个分拆

G =
⊔
i∈I

Hai

其中 {ai}i∈I 为 G 关于 H 的右陪集完全代表元系右陪集完全代表元系右陪集完全代表元系

Key Fact : |Ha| = |H|，这是因为
H

1:1−→ Ha

h 7−→ ha

由 |G| < +∞ 知 |I| < +∞，故
|G| =

∑
i∈I

|Hai| = |H| · |I|

□

评价

(1) Lagrange 定理强烈依赖于群的可逆性，即群中任意元素均可逆！考察含幺半群 (Z8, ·)，它有含幺子
半群

{0, 1, 3}

但是 3 - 8
(2) 定义 |I| = [G : H] 为 H 的指数，即右陪集的个数，由证明过程我们有

|G| = |H| · [G : H]

(3) 类似地可以定义左陪集 aH = {ah|h ∈ H}，定义等价关系

a ≈ b ⇐⇒ aH = bH ⇐⇒ b−1a ∈ H

也可以证明 Lagrange 定理，从而左陪集的个数与右陪集的个数，即为 [G : H]

Ex 若 G =
⊔
i∈I

Hai，证明 G =
⊔
i∈I

a−1
i H

例 4.15 考察 G = GL2(F2) =

{(
a b

c d

)∣∣∣∣∣a, b, c, d ∈ F2, ad− bc 6= 0

}
先考虑第一列，由可逆知 (a, c) 的可能取值为 (1, 0), (0, 1), (1, 1)，固定第一列后，第二列不能等于第
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一列或 (0, 0)，因此只有两种可能，故 |G| = 3× 2 = 6 ，具体如下

G =

{(
1 0

0 1

)
,

(
1 1

0 1

)
,

(
0 1

1 0

)
,

(
0 1

1 1

)
,

(
1 1

1 0

)
,

(
1 0

1 1

)}

我们有观察

(1) 幺元为

(
1 0

0 1

)
= 1G

(2) 记 a =

(
1 1

0 1

)
，则 a2 =

(
1 0

0 1

)
= 1G

(3) 子群 H = {1, a} ≤ G，记 b =

(
0 1

1 1

)
, c =

(
0 1

1 0

)
，则

G = H tHb tHc

其中

Hb = {b, ab} =

{(
0 1

1 1

)
,

(
1 0

1 1

)}
, Hc = {c, ac} =

{(
0 1

1 0

)
,

(
1 1

1 0

)}

但是 bH 6= Hb，经计算可得 ba = c，但是由 Ex 知

G = H t b−1H t c−1H

定义 4.1.4（阶）设 a ∈ G，定义 a 的阶 (order) 为最小的正整数 d, s.t. ad = 1G，记作 d = Ord(a)；
若为加法群，则定义 a 的阶为最小的正整数 d, s.t. da = 0G

Fact 若 |G| < +∞，则 ∀a ∈ G,Ord(a) < +∞

证明 考虑 G 中的无穷序列

1, a, a2, · · · , an, · · ·

由 |G| < +∞ 知，一定存在 i > j, s.t. ai = aj，所以 ai−j = 1，故 {d > 0|ad = 1} 非空，取它的最小元 d

Claim：Claim：Claim：d = Ord(a) □

推论 4.1.2 设 |G| < +∞, a ∈ G，则
Ord(a)

∣∣ |G|
证明 H = {1, a, · · · , ad−1} 两两不同，不难验证 H ≤ G, |H| = d，由 Lagrange 定理知，d

∣∣ |G| □

例 4.16 设 p 为素数，F×
p = {1, · · · , p− 1} 是单位群，对 ∀a ∈ F×

p , a
p−1 = 1，即 ap = a，故可将费马小

定理视为 Lagrange 定理的推论

例 4.17 设 E 是有限域，E = |p|n，则 |E×| = pn − 1，对 ∀a ∈ E×, ap
n−1 = 1E，即 ap

n

= a

例 4.18（阶表）考虑 G = U(Z8) = {1, 3, 5, 7}，它的阶表为
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1 3 5 7

Ord 1 2 2 2

例 4.19 若 G = (Z4,+) = {0, 1, 2, 3}，它的阶表为

0 1 2 3

Ord 1 4 2 4

因此 (Z4,+) 与 (U(Z8), ·) 显然不同构！

定义 4.1.5（群同态、群同构）设 G,H 为群，映射 f : G→ H 称为群同态，若

f(ab) = f(a)f(b), ∀a, b ∈ G

若 f 还是双射，则称 f 为群同构

命题 4.1.1 设 f : G→ H 是群同态

(1) f(1G) = 1H

Proof : f(1G · 1G) = f(1G)f(1G)，由 H 中的消去律得 f(1G) = 1H

(2) f(a−1) = f(a)−1, ∀a ∈ G

Ex f : G→ H 为群同态，G,H 为有限群，a ∈ G，则 Ord(f(a)) | Ord(a)；若 f 为同构，则 Ord(a) =
Ord(f(a))，因此同构的群阶表相同（对应元素的阶相同）

例 4.20 U(Z8) 不同构于 (Z4,+)

Ex 考察求逆映射

(−)−1 : G −→ G

g 7−→ g−1

则 (−)−1 是群同态 ⇐⇒ G 是 Abel 群

Ex 定义 G 的反群 Gop = {aop|a ∈ G}，乘法定义为 aopbop = (ba)op，求证 G 同构于 Gop

例 4.21 行列式映射
det : GLn(C) −→ C×

A 7−→ det(A)

是群同态

Ex ∀n ≥ 2, µn = {z ∈ C|zn = 1} ≤ C×，证明 (µn, ·) 同构于 (Zn,+)

定义 4.1.6（群的直积）设 G,H 是群，定义

G×H = {(g, h)|g ∈ G,h ∈ H}
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为 G 与 H 的直积，它的幺元为 (1G, 1H)，乘法定义为 (g, h) · (g′, h′) = (gg′, hh′)

评价

(1) 典范单同态

G −→ G×H

g 7−→ (g, 1H)

(2) 投影映射（满射）

G×H Pr−→ G

(g, h) 7−→ g

(3) 元素分解：∀(g, h) ∈ G×H, (g, h) = (g, 1H) · (1G · h)
(4) Ord(g, h) = lcm(Ord(g),Ord(h))

Ex 回忆 µ2 = {1,−1}，记 µ2 × µ2 = V4，称为 Klein 四群，证明 V4 ' U(Z8)

§ 4.2 循环群

定义 4.2.1（生成子群）设 G 是群，给定子集 X ⊆ G，记

(X) =包含X的最小子群

=
{
x1x2 · · ·xn|∀i, xi ∈ X或x−1

i ∈ X
}

称 (X) 为由 X 生成的最小子群，特别地若 X = {a}，则

(a) = {· · · , a−2, a−1, 1, a, a2, · · · }

定义 4.2.2（循环群）称 G 为循环群 (Cyclicgroup)，若 ∃a ∈ G, s.t. (a) = G，此时 a 为 G 的生成

元；循环群一定是 Abel 群！

例 4.22
• µn =

(
e

2πi
n

)
是循环群

• (Z,+) 是循环群，它可以由 1 或 −1 生成
• (Zn,+) 是循环群

命题 4.2.1 设 G 为循环群，则 G 同构于 (Z,+) 或 (Zn,+)

证明 取 G 的一个生成元 a，则

G = {an|n ∈ Z}

Case 1. Ord(a) = +∞
则 am 6= an, ∀m 6= n（否则 an−m = 1G，矛盾！），因此我们有群同构

(Z,+)
∼−→ (G, ·)

n 7−→ an
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Case 2. Ord(a) = n < +∞
则 G = (a) = {1, a, · · · , an−1}，因此我们有群同构

(Zn,+) −→ (G, ·)

n 7−→ an

□

评价 n 阶循环群 ' (Zn,+) ' µn

命题 4.2.2 设 G = (a) 为循环群，则

(1) 若 |G| = +∞，则

• G 恰有两个生成元 a, a−1

• G 的子群如下：{1G},
(
ad
)
, d ≥ 1，且

(
ad
)
' G

(2) 若 |G| = n < +∞，则

• G 恰有 φ(n) 个生成元 {ak|1 ≤ k ≤ n− 1, gcd(k, n) = 1}

• 对 ∀d | n, ∃!d 阶子群 Hd =
(
a

n
d

)
≤ G，因此我们有一一对应

{G的子群} 1:1←→ {d : d | n, 1 ≤ d ≤ n}

Hd 7−→ d

评价 将 G 分别同构到 (Z,+), (Zn,+)，将生成元打到 1，考察 (Z,+), (Zn,+) 的子群即可证明

例 4.23 无限循环群 (Z,+) '

{(
1 n

0 1

)∣∣∣∣n ∈ Z

}
≤ SL2(R)

Fact 设 G = (a) 为有限循环群，|G| = n，则

(1) Ord(al) = n
gcd(n,l)

(2) 若 x ∈ G,Ord(x) = d，则 |{x ∈ G|Ord(x) = d}| = φ(d)，即 d 阶元的个数为 φ(d)

Proof : 考察 gcd(k, d) = 1，若 a 为 d 阶元，则 ak 也为 d 阶元

(3) 按阶数对 G 进行剖分 n =
∑
d|n
φ(d)

|G| =
∑
d|n

|{x ∈ G|Ord(x) = d}|

(4) G 有唯一 d 阶子群 Hd = {1, a
n
d , a

2n
d , · · · }

Fact 若 |G| = n < +∞，则 G 为循环群 ⇐⇒ G 有 n 阶元

证明 (=⇒) : 由定义显然

(⇐=) : 设 a ∈ G,Ord(a) = n，则

(a) = {1, a, · · · , an−1} ≤ G
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且二者大小相同，故 G = (a) □

推论 4.2.1 设 p 为素数，则 p 阶群 ' µp

证明 对 1G 6= a ∈ G，因为 1 < Ord(a)
∣∣ |G| = p，所以 Ord(a) = G，即 G = (a) □

定理 4.2.1 设 |G| = n < +∞，则

G是循环群 ⇐⇒ ∀d | n, 至多存在一个d阶子群

证明 (=⇒) : 上面已经证明

(⇐=) : 对 ∀d | n，定义
Sd = {g ∈ G|Ord(g) = d}

则 G =
⊔
d|n
Sd

Claim：Claim：Claim：Sd 6= ∅, ∀d | n
Proof Of Claim : ∀d | n，若 Sd 6= ∅，则 ∀g ∈ Sd，则 Hd = (g) ≤ G 为 G 的 d 阶子群，且由公式

Ord(gk) = d

gcd(k, d)

知，恰有 φ(d)个 k 满足 gcd(k, d) = 1，故这 φ(d)个 gk 均在 Sd 中，由至多存在一个 d阶子群知 Sd ⊆ Hd，

所以

|G| =
∣∣∣∣⊔
d|n

Sd

∣∣∣∣ =∑
d|n

|Sd| ≤
∑
d|n

φ(d) = n = |G|

□

定理 4.2.2 设 k 为域，G ≤ k×，若 |G| < +∞，则 G 是循环群；特别地，若 |G| = n，G 的生成元

为 k 中的 n 次本原单位根

证明 设 |G| = n，对 ∀d | n, ∃Hd ≤ n 为 d 阶子群，取 H 的生成元 g，则 gd = 1G = 1k，所以

H ⊆ Rootk(xd − 1)

二者大小均为 d，故 H = Rootk(xd − 1) 至多唯一！ □

例 4.24 C× 的有限子群恰为 µn, n ≥ 1，但 C× 不是循环群（C 甚至都不可数）！

Ex 证明 Q× 不是循环群

推论 4.2.2 设 E 是有限域，则 E× 是 pn − 1 阶循环群，因此 E/Fp 是单扩张！
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§ 4.3 正规子群
引入：考虑群同态 f : G→ H，我们有

f(ab) = f(a)f(b), ∀a, b ∈ G

f(1G) = 1H

f(a−1) = f(a)−1

考虑 f 的像集 Imf = f(G) ≤ H，类似环同态基本定理，定义 G 上的等价关系

a
f∼ b ⇐⇒ f(a) = f(b) in H

⇐⇒ f(ab−1) = 1H

⇐⇒ f(b−1a) = 1H

评价 一般情况 ab−1 6= b−1a，但它们“相似”：

ab−1 = a(b−1a)a−1

定义 4.3.1（群同态的核）设 f : G→ H 是群同态，定义群同态的核

N
def
= Ker(f) = {a ∈ G|f(a) = 1H} ≤ G

评价

(1) ∀a ∈ N, f(a−1) = f(a)−1 = 1−1
H = 1H，故 a−1 ∈ N

(2) 回忆 Lagrange 定理的证明

f(a) = f(b) ⇐⇒ ab−1 ∈ N ⇐⇒ Na = Nb

⇐⇒ b−1a ∈ N ⇐⇒ aN = bN

引理 4.3.1 ∀a ∈ G,N = Ker(f)，则 aN = Na

证明 因为

b ∈ aN ⇐⇒ b−1a ∈ N ⇐⇒ ab−1 ∈ N ⇐⇒ b ∈ Na

□

定义 4.3.2（正规子群） N ≤ G 称为正规子群，若 ∀a ∈ G, aN=Na ，记作 N ⊴G

Fact ∀f : G→ H,Ker(f)⊴G

例 4.25 设 G 是 Abel 群，则任意 G 的子群均为正规子群
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例 4.26
{(

1 0

0 1

)
,

(
1 1

0 1

)}
≤ GL2(F2) 不正规

Ex 证明群 G 的中心 Z(G) 是正规子群，其中

Z(G) = {g ∈ G|gh = hg, ∀h ∈ G}

Fact 对 ∀U ≤ G, a ∈ G，U 的共轭是 G 的正规子群

aUa−1 = {aha−1|h ∈ U}⊴G

且我们有群同构 U ' aUa−1，但它们做为集合一般不相等

Fact 设 N ≤ G，则
N ⊴G ⇐⇒ ∀a ∈ G,N = aNa−1

评价“正规”性可以理解为“共轭不变性”

例 4.27 GL2(F2) 有非平凡正规子群{(
1 0

0 1

)
,

(
0 1

1 1

)
,

(
1 1

1 0

)}

因为 (
0 1

1 1

)3

=

(
0 1

1 1

)(
0 1

1 1

)(
0 1

1 1

)
=

(
1 1

1 0

)(
0 1

1 1

)
=

(
1 0

0 1

)

评价 数学忌崇拜！人人平等！

Ex 设 N ≤ G，若 [G : N ] = 2，证明 N ⊴G

例 4.28 考虑 det : GLn(C)→ C×，它的核 SLn ⊴GLn(C)

例 4.29 考虑 Mn(C) 中对角元均为 1 的上三角阵全体 Un(C) ≤ GLn(C)，它不是正规子群！

定义 4.3.3（商群）设 N ⊴G，定义 N 在 G 上的商群

G/N = {aN |a ∈ G}

它的大小为 |G/N | = [G : N ]，记 aN = a，则 a = b ⇐⇒ ab−1 ∈ N ⇐⇒ b−1a ∈ N

引理 4.3.2（陪集上乘法的良定性）我们希望在商群上定义乘法

a · b = ab
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验证它的良定性；设 a = a′, b = b
′
，是否有 ab = a′b′？事实上

(a′b′)−1ab = b′
−1

a′
−1

ab

= b′
−1

bx, x ∈ N

= (b′b)x ∈ N

第二行是因为 a′
−1

a ∈ N，则 a′
−1

ab ∈ Nb = bN，可设它为 bx, x ∈ N

Fact 1G/N = 1, a−1 = a−1

Fact 我们有典范（满）同态
can : G −→ G/N

a 7−→ a = aN

其中 Ker(can) = N

定理 4.3.1（群同态基本定理）设 f : G → H 是群同态，则 Im(f) ≤ H,Ker(f) ⊴H，且 f 诱导唯

一群同构

f : G/Ker(f) ∼−→ Im(f)

a 7−→ f(a)

即下面的图交换

G H

G/Ker(f) Im(f)

f

can

f

inc

证明 因为 aKer(f) = bKer(f) ⇐⇒ a
f∼ b □

评价 • f 是单射 ⇐⇒ Ker(f) = {1G}，此时有群同构 G
∼−→ Im(f) ≤ H

• f 是满射 ⇐⇒ Im(f) = H，此时有群同构 G/Ker(f) ∼−→ H

定理 4.3.2（对应定理）设 N ⊴G，则

{K|N ≤ K ≤ G} 1:1−→ {G/N的子群}

K 7−→ K/N

{a ∈ G|a ∈ L} ←−p L

此时 K ⊴G ⇐⇒ (K/N)⊴ (G/N)，且有群同构

(G/N)
/
(K/N)

∼−→ G/K
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证明 设 L ≤ G/N，验证上面给出的关系是互逆的；特别地

K ⊴G =⇒ a(K/N)a−1 = (aKa−1)/N = K/N

若 N ⊴K ⊴G，则有群同态

σ : (G/N) −→ (G/K)

aN 7−→ aK

Ker(σ) = {aN |aK = 1G/K} = {aN |a ∈ K} = K/N ⊴G/N □

定理 4.3.3（第二群同构定理）设 N ⊴G,H ≤ G，则
(1) NH = HN ∴ N ≤ NH ≤ G
(2) (N ∩H)⊴H，且有群同构 H

/
(N ∩H)

∼−→ (NH)
/
H

证明 只证明 (2)，因为

H
inc
↪→ G

can
⇒ G/N

h 7→ h 7→ h

它的像 (NH)/N = {hn|hn ∈ NH}，核为 {h ∈ H|h = 1} = {h ∈ H|h ∈ N} = N ∩H，由群同态基本定
理即证 □

Ex P17 5, 13 P20 3, 10 P25 7, 10

例 4.30 回忆：中心位于原点的正方形

AB

C D

它的正交对称群为 Σ(□) = {g ∈ O2|g(□) = □} ≤ O2，记它的顶点集合 V = {A,B,C,D}，设 S(V ) =

{σ : V → V } 为 V 的（抽象）对称群，则 |S(V )| = 4! = 24，我们有群同态

φ : Σ(□) −→ S(V )

g 7−→ (g|V : V
∼−→ V )

Claim：Claim：Claim：φ 是单射，故 Σ(□) = Im(φ)

Proof Of Claim : 只需证明 Ker(φ) 是平凡子群

Ker(φ) = {g ∈ Σ(□) : g|V = IdV }

= {g ∈ Σ(□) : g(
−−→
OM) =

−−→
OM,M ∈ V }

=

{(
1 0

0 1

)}
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例 4.31 设 f(x) = x3 − 2 ∈ Q[x]，E = Q( 3
√
2, 3
√
2ω, 3
√
2ω2) = Q( 3

√
2, ω) 为 f(x) 的分裂域，则

|Aut(E)| = |Aut(E/Q)| = dimQE = 6

记 X = RootE(x3 − 2) = { 3
√
2, 3
√
2ω, 3
√
2ω2} def

= {a, b, c}，设 S(X) = {σ : X
∼−→ X} 为 X 的抽象对称群，

则 |S(X)| = 6

Claim：Claim：Claim：有群同态
φ : Aut(E) : −→ S(X)

σ 7−→ (σ|X : X
∼−→ X)

Key ClaimKey ClaimKey Claim φ 是单射

Proof Of Claim : 因为

Ker(φ) = {σ ∈ Aut(E) : σ|X = IdX}

= {σ ∈ Aut(E) : σ(x) = x, x = a, b, c}

= {IdE}

所以 φ 是群同构！即 Aut(E) ' S(X) ' S3

§ 4.4 对称群

定义 4.4.1（对称群）设 X 是集合，S 上的双射全体记为

S(X) = {σ : X
∼−→ X}

称为 X 的抽象对称群；若 X = {1, 2, · · · , n}，则记 S(X) = Sn

Fact 若存在双射 X
δ−−→
∼

Y，则有群同构

S(X) −→ S(Y )

σ 7−→ δσδ−1

推论 4.4.1 设 |X| = n，则 S(X) ' Sn，即 n 阶群在同构意义下唯一。因此为方便表示，我们研究

X = {1, 2, · · · , n}

Fact |Sn| = n!

例 4.32 S1 为平凡群；S2 = {Id, σ} 为 Abel 群；若 n ≥ 3，则 Sn 非交换

约定约定约定：对于 σ ∈ Sn, ∀1 ≤ i ≤ n，我们用

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
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来表示 σ，其中第一行为定义域，第二行为取值，显然有

σ−1 =

(
σ(1) σ(2) · · · σ(n)

1 2 · · · n

)

且 |Sn| = n!

例 4.33 |S3| = 3! = 6，设 σ =

(
1 2 3

2 1 3

)
, δ =

(
1 2 3

2 3 1

)
, τ =

(
1 2 3

1 3 2

)
，则

σ−1 =

(
2 1 3

1 2 3

)
=

(
1 2 3

2 1 3

)
= σ

δ−1 =

(
2 3 1

1 2 3

)
=

(
1 2 3

3 1 2

)
6= δ

Q：Q：Q：如何求 δ2？

δ ◦ δ(1) = δ(2) = 3, δ ◦ δ(2) = δ(3) = 1, δ ◦ δ(3) = δ(1) = 2，类似地我们发现 δ3 = IdS3

Q：Q：Q：如何求 σ ◦ τ？
对于每个元素逐一计算即可

σ ◦ τ =

(
1 2 3

2 3 1

)
= δ

Fact 对 ∀n ≥ 3, Sn 不是 Abel 群！因为 σ ◦ τ 6= τ ◦ σ

证明 考虑嵌入同态

Sn −→ Sn+1

σ 7−→ σ

其中 σ|Sn
= σ, σ(n+1) = n+1，进而在 Sn 中，σ ◦ τ 6= τ ◦ σ，其中 σ, τ 是上面 S3 中不可交换的例子□

定义 4.4.2（轮换）设 t ≥ 2, {i1, i2, · · · , it} ⊆ {1, 2, · · · , n}，记 c = (i1i2 · · · it) ∈ Sn，表示

c : i1 7→ i2 7→ · · · 7→ it 7→ i1

若 j ∈ {i1, i2, · · · , it}c ∩ {1, 2, · · · , n}，则 c(j) = j，称 c ∈ Sn 为 t-轮换

评价

(1) Ord(c) = t, ct = Id
(2) 若 c = (i1i2 · · · it)，则 c−1 = (itit−1 · · · i1)
(3) 2-轮换也称对换对换对换，且 (ij) = (ji)，且 (ij)2 = Id，Sn 中对换的个数为 n(n−1)

2

(4) 1-轮换是平凡的，可以略去不写
(5) (i1i2i3) = (i2i3i1) = (i3i1i2)，对 t-轮换也类似，即同一个轮换有多种表达方式，一般习惯把数字小
的放到前面

(6) 同一个 t-轮换有 t 种不同的表达形式，因此 t 轮换共有
(
n
t

)
· t! · 1

t
= n!

(n−t)!t 种
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例 4.34 S2 = {Id, (12)}
S3 = {Id, (12), (13), (23), (132), (123)}，注意到 (132)−1 = (123)

并非所有元素都是 t-轮换！在 S4 中(
1 2 3 4

2 1 4 3

)
= (12)(34)

其中 (12)(34) 表示 (12) ◦ (34)，但是一般不写出来

引理 4.4.1 设 σ ∈ Sn，给定 t 轮换 (i1 i2 · · · it)，则

σ ◦ (i1i2 · · · it) ◦ σ−1 =
(
σ(i1)σ(i2) · · ·σ(it)

)

证明 因为

σ ◦ (i1i2 · · · it) ◦ σ−1
(
σ(ir)

)
= σ(ir+1)

□

引理 4.4.2 在 Sn 中，设 σ, τ 是轮换，若 σ, τ 不相交，则 σ ◦ τ = τ ◦ σ

证明 设 τ = (i1i2 · · · it)，根据引理 4.4.1

σ ◦ τ ◦ σ−1 =
(
σ(i1)σ(i2) · · ·σ(it)

) 不相交
===== (i1i2 · · · it)

□

例 4.35 在 S3 中，设 σ = (12), τ = (23) ，则

(12)(23)(12)−1 =
(
σ(2)σ(3)

)
= (13)

(23)(12)(23)−1 =
(
τ(1)τ(2)

)
= (13)

因此在 S3 中，στσ = τστ =⇒ (στ)3 = Id

命题 4.4.1（轮换的分解）对 ∀σ ∈ Sn，存在唯一两两不交的轮换 c1, · · · , cl，使得

σ = c1c2 · · · cl

证明 设 σ ∈ Sn，首先考虑数字 1 所在的轮换，考虑 {1, 2, · · · , n} 上 1 的 σ-轨道{
1 σ(1) σ2(1) · · ·

}
Case 1. 若 σ(1) = 1，则为 (1)
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Case 2. 若 σ(1) 6= 1, σ2 = 1，则为
(
1 σ(1)

)
Case 3. 若 σ(1) 6= 1, σ2(1) 6= 1, σ3(1) = 1，则为

(
1 σ(1) σ2(1)

)
Case 4. · · ·

除去 1 所在的轮换中的元素，对其它元素也类似操作即可 □

例 4.36 在 S7 中，化简 (456)(567)(761) 为轮换的乘积

解 复合映射，从右往左读

1 7→ 7 7→ 5 7→ 6, 6 7→ 1，所以有 (16)

2 7→ 2，所以有 (2)

3 7→ 3，所以有 (3)

4 7→ 5, 5 7→ 6 7→ 4，所以有 (45)

7 7→ 6 7→，所以有 (7)

因此 σ = (16)(45)

定义 4.4.3（型）设 σ = c1 · · · cn 为两两不交的轮换的乘积，其中 i-轮换的个数为 λi，则 σ 的型为

1λ12λ2 · · ·nλn

评价 有定义立刻有
n∑
i=1

iλi = n

定理 4.4.1 σ, τ ∈ Sn 共轭 ⇐⇒ σ, τ 同型

证明 (=⇒) : 设 σ = c1 · · · cl 为两两不交的轮换的乘积，由共轭知 ∃h ∈ Sn, s.t. τ = hσh−1 ，因此

τ = hσh−1 = (hc1h
−1)(hc2h

−1) · · · (hclh−1)

由引理 4.4.1，τc1τ−1 和 c1 是同阶轮换，因此它们同型

(⇐=) : 设 σ, τ 同型，设 σ = (a1) · · · (as) · · · (b1b2) · · ·

τ = (a′1) · · · (a′s) · · · (b′1b′2) · · ·

考虑 h ∈ Sn 如下（即将对应的 t-轮换中的元素做对应，注意到我们只是随意将同阶轮换进行排列，故 h

不唯一）
h : {1, 2, · · · , n} −→ {1, 2, · · · , n}

aj 7−→ a′j

bi 7−→ b′i

不难验证 τ = hσh−1 □

推论 4.4.2 假设 H ⊴ Sn，则它一定包含了某一整个共轭类，即所有型相同的元素

例 4.37 S3, S4 的共轭类如下
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型 13 1121 31

元素 Id (12), (13), (23) (123), (132)

型 14 1221 22 1131 41

元素 Id
(12), (13)
(14), (23)
(24), (34)

(12)(34)
(13)(24)
(14)(23)

(123), (132)
(124), (142)
(134), (143)
(234), (243)

(1234), (1243)
(1324), (1342)
(1423), (1432)

例 4.38 考虑嵌入同态 S3
保4
↪→ S4，因为

(14)(12)(14)−1 = (24) /∈ S3

所以 S3 不是 S4 的正规子群！

例 4.39 考虑正方形的正交对称群到 S4 的嵌入同态 Σ(□) ↪→ S4，它的像为（记为 H）

1. 四个旋转：Id, (1234), (13)(24), (1432)
2. 四个对称：(14)(23), (12)(34), (24), (13)

12

3 4

QQQ：在像群 H 中，(13)(24), (14)(23) 是否共轭？

AAA：不共轭！它们的原像的行列式为 1 和 −1，共轭矩阵的行列式相等，故不共轭！

Ex 若正方形顶点的编号变为

13

2 4

12

4 3

同例 4.39，分别计算 Σ(□) 到 S4 的嵌入同态的像集 H ′,H ′′，并且计算 H ∩H ′ ∩H ′′

Ex 证明上面的 H 为由 (13), (1234) 生成的子群

Fact Sn 可以由 (12), (23), · · · , (n− 1, n) 生成

证明 Step 1. 我们可以将任意一个 t-轮换写为 t− 1 个对换之积

(i1i2 · · · it) = (it−1it) · · · (i2it)(i1it)
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Step 2. 当 i < j 时，(ij) = (i+ 1, j)(i, i+ 1)(i+ 1, j)−1，对 (i+ 1, j) 继续处理，进而第一步中的每

个 (ijit) 均可以写为相邻对换之积 □

评价 群表示的角度：在 Sn 中，令 si = (i, i+ 1), 1 ≤ i ≤ n− 1，则

(1) s2i = Id
(2) sisi+1si = si+1sisi+1

(3) sisj = sjsi as |j − i| ≥ 2

评价 大家没事干可以挑战一下自己学一下李代数

定义 4.4.4（置换矩阵）给定 σ ∈ Sn，我们有线性变换

Pσ : Rn −→ Rn

ei 7−→ eσ(i)

而线性变换对应的矩阵（也记为 Pσ）为 Pσ =
(
eσ(1) eσ(2) · · · eσ(n)

)

定义 4.4.5（奇/偶置换）我们有群同态

φ : Sn −→ GLn(R)

σ 7−→ Pσ

它确实是群同态，因为

Pσ ◦ Pτ (ei) = Pσ(eτ(i)) = Pσ(τ(i)) = Pστ (ei)

再将它与行列式同态复合，记 det ◦φ = sgn，则有群同态

sgn : Sn −→ {−1, 1}

σ 7−→ det(Pσ)

若 sgn(σ) = 1，则称 σ 为偶置换；若 sgn(σ) = −1，则称 σ 为奇置换，定义

An = {偶置换}

则 Ker(sgn) = An，由群同态基本定理，有群同构 Sn/An ' {−1,+1}，进而 |An| = n!
2

Fact sgn(i1, i2, · · · , im) = (−1)m−1

证明 (i1i2 · · · im) = (i1im) · · · (i1i3)(i1i2) □

例 4.40 A3 = {Id, (123), (132)}◁ S3，S3 的子群格如下
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S3

A3

{Id, (12)} {Id, (13)} {Id, (23)}

{Id}

例 4.41（S4 的正规子群） S4 的元素如下 (24 = 1 + 6 + 3 + 8 + 6)

型 14 1221 22 1131 41

元素 Id
(12), (13)
(14), (23)
(24), (34)

(12)(34)
(13)(24)
(14)(23)

(123), (132)
(124), (142)
(134), (143)
(234), (243)

(1234), (1243)
(1324), (1342)
(1423), (1432)

其中型为 1221, 22 的元素均为二阶元，即有 9 个二阶子群

设 N ⊴ S4，由 Lagrange 定理知 |N | = 12, 8, 6, 4, 3, 2, 1，且 N 是共轭类之并，即型相同的元素一定

会出现在这个子群之中，由上表可知，符合的阶数为 12, 4，即 S4 有两个（真）正规子群K4 = {Id, (14)(23), (13)(24), (12)(34)}◁ S4

A4 = {偶置换}

Ex 证明 K4 ' V4

定义 4.4.6（单群 , simple group）设 G 是单群，若 G 无非平凡的正规子群，即 G 的正规子群只有

{1G}, G

Ex 设 |G| < +∞ 且 G 是 Abel 群，求证：G 是单群 ⇐⇒ G 是 p 阶循环群

评价 |A5| = 60，A5 是单群（并非 Abel）

定理 4.4.2 ∀n ≥ 5, An 是单群

证明 分三步进行证明

Step 1. An 由 3-轮换生成：因为 An 中的元素都为偶置换，我们只需证明任意两个对换可以写为三

轮换的形式：若两个对换中包含三个不同的数 i, j, k，则 (ij)(ik) = (ikj)；若两个对换中包含四个不同的

数 i, j, k, l，则 (ij)(kl) = (kil)(ijk)

Step 2. 3-轮换在 An 中共轭：对任意 3-轮换 (ijk), ∃σ ∈ Sn, s.t. σ(i) = 1, σ(j) = 2, σ(k) = 3，若

σ ∈ An，则 σ(ijk)σ−1 = (σ(i)σ(j)σ(k)) = (123)；若 σ /∈ An，即 σ 是奇置换，考虑 (45)σ ∈ An，我们有

(45)σ(ijk)σ−1(45)−1 = (45)(123)(45) = (123)
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Step 3. 设 {Id} 6= N ◁An，则 N 必有 3-轮换（没证，见课本），因此 N 包含所有的三轮换，由第

一步知 N = An，即 An 没有非平凡的正规子群！ □

评价 A4 不是单群，因为 K4 ◁A4；n ≥ 5, Sn 非可解

推论 4.4.3 n ≥ 5，则 An 是 Sn 的唯一非平凡正规子群

证明 设 {Id} 6= N ⊴ Sn，则 (N ∩An)◁An，由 An 是单群知 N ∩An = An 或 {Id}
Case 1. 若 N ∩An = An，则 An ⊂ N ⊂ Sn，且 N ≤ Sn，由于 An 是 Sn 的最大阶真子群，且 N

是包含 An 的真子群，所以 An = N

Case 2. 若 N ∩An = {Id}，则有群嵌入

φ : An
inc
↪→ Sn ↠ Sn/N

且 Kerφ = N ∩An = {Id}，因此是单同态，即 N = 2，设 σ ∈ N\{Id}，则 Ord(σ) = 2，因此 σ 为不交

的对换之积（假设 σ 写成不交的轮换之积后，包含 3-轮换及以上，则 σ2 6= Id），但由正规子群一定包含
一整个共轭类，而 σ 所在的共轭类肯定不止一个元素，这就导出矛盾！ □

定理 4.4.3 设 |G| < +∞，C ⊆ G 是共轭类，则 |C|
∣∣ |G|

例 4.42 是否存在 σ ∈ A4, s.t. σ(12)(34)σ−1 = (13)(24)？

解 因为 σ(12)(34)σ−1 = (σ(12)σ−1)(σ(34)σ−1) = (σ(1)σ(2))(σ(3)σ(4))，注意 (abc) = (bca) = (cab)，故

可能为循环相等，具体验证即可

例 4.43 (123), (132) 是否在 A4 中共轭？

解 σ(123)σ−1 = (σ(1)σ(2)σ(3))，验证三种循环相等的情况！

Ex 算出 A4 中 (123) 和 (132) 的共轭类

Ex 证明 A4 没有 6 阶子群

§ 4.5 群作用

定义 4.5.1（左作用）设群 G 左作用于集合 X，记为 G↷X，是指映射

G×X ψ−→ X

(g, x) 7−→ ψ(g, x)
记作
==== g.x ∈ X

满足

(1) 1G.x = x, ∀x ∈ X，即 ψ(1G, x) = x

(2) h.(g.x) = (hg).x，即 ψ(h, ψ(g, x)) = ψ(hg, x)

此时称 X
def
= (X,ψ) 为左 G-集
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Fact 任给群同态 G
ρ−→ S(Y )，则有左作用 G↷Y

g.y = ρ(g)(y)

Ex 验证上述确实为左作用

Fact 给定左 G-集 (X,ψ)，则有

ρ : G −→ S(X)

g 7−→ ρ(g)

其中
ρ(g) : X −→ X

x 7−→ g.x

接下来验证 ρ 是群同态，即 ρ 保乘法：ρ(gh) = ρ(g)ρ(h)ρ(gh) = (gh).x

ρ(g) ◦ ρ(h) = ρ(g)(h.x) = g.(h.x) = (gh).x

我们将上述事实总结为如下定理

定理 4.5.1 设有群作用 G↷X, 则存在双射

{G在X上的左作用} 1:1←→ Hom(G,S(X))

G↷X 7−→ [ρ : G→ S(X), x 7→ g.x]

[G↷X : g.y = ρ(g)(y)]←−p ρ

其中 Hom(G,S(X)) 表示 G 到 S(X) 的群同态全体

评价 给定左作用, 我们通常研究它对应的 ρ : G→ S(X). 思考右作用 X↶G 如何定义？

定义 4.5.2（群作用的核）定义群作用的核 N 为它所对应的群同态 ρ : G → S(X) 的核, 即 N =

Kerρ，所以

a ∈ G是这个作用的核 ⇐⇒ a ∈ Kerρ ⇐⇒ ρ(a) = IdS(X)

⇐⇒ ∀x ∈ X, ρ(a)(x) = x ⇐⇒ ∀x ∈ X, a.x = x

例 4.44 S(X)↷X

S(X)×X ψ−→ X

(σ, x) 7−→ σ(x)

称 (X,ψ) 为左 S(X)-集
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例 4.45 考虑域扩张 K/k，Aut(K/k)↷K

Aut(K/k)×K ψ−→ K

(σ, a) 7−→ σ(a)

例 4.46 GL(V )↷V，其中 V 是线性空间

GL(V )
ψ−→ V

(A, x) 7−→ Ax

称为左线性作用

定义 4.5.3（轨道 , orbit）给定 G↷X，定义

1. x 的 G-轨道，G-orbit
Ox = {g.x|g ∈ G} ⊆ X

2. X 上有等价关系
x ≈ y ⇐⇒ ∃g ∈ G, s.t. y = g.x

即 Ox 为 x 所在的等价类（若 y = g.x，则 g−1.y = g−1.(g.x) = (g−1g).x = 1.x = x）

3. 有 X 的 G-轨道分解
X =

⊔
x∈I

Ox

其中 I 为轨道的完全代表元系（每个轨道中取一个代表元）

定义 4.5.4（可迁 , transitive）称 G↷X 可迁，若仅有一个 G-轨道，即对 ∀x, y ∈ X, ∃g ∈ G, s.t. y = g.x

Fact 给定左作用 G↷X, 它的限制作用 G↷Ox 是可迁的

证明 这是因为 Ox 的定义, 即对 ∀y ∈ Ox, ∃g ∈ G, s.t. y = g.x □

定义 4.5.5（稳定化子 , stablizer）设 G↷X，定义 x ∈ X 的稳定化子为

Gx = {g ∈ G|g.x = x}

可以验证 Gx ≤ G 为子群

引理 4.5.1 设 G↷X,x, y ∈ X，若 ∃h ∈ G, s.t. x = h.y，则

Gx = hGyh
−1

即同一轨道中不同元素的稳定化子是相互共轭的
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证明 对 ∀g ∈ Gx, g.x = x, 又因为 x = h.y, 所以 y = h−1.x

(h−1gh).y = (h−1g).(h.y) = (h−1g).x = h−1.(g.x) = h−1.x = y

所以 h−1gh ∈ Gy, 即 g ∈ hGyh−1; 反之假设 g ∈ hGyh−1, 则 h−1gh ∈ Gy, 即 (h−1gh).y = y, 所以

y = (h−1gh).y = (h−1g).(h.y) = (h−1g).x =⇒ x = h.y = h.(h−1g.x) = g.x

因此 g ∈ Gx, 所以二者相等 □

评价 因此 Gx ' Gy，它们的阶相同

例 4.47（左诱导作用）给定 H ≤ G，考虑 G/H = {aH|a ∈ G}（不一定是商群，此时只表示左陪集的全
体），则 G↷G/H

g.(aH) = gaH

记为左诱导作用，它是可迁的；特别地取 H = {1G}，此时称为左正则作用

Ex GaH = aHa−1, ∀a ∈ G

例 4.48 S↷
n {1, 2, · · · , n} 可迁，对 ∀1 ≤ i ≤ n，它的稳定化子 ' Sn−1

例 4.49 ∀σ ∈ Sn，它的生成子群 (σ) ≤ Sn，有群作用 G = (σ)↷{1, 2, · · · , n}，它的 G-轨道？

例 4.50 给定域扩张 K/k，考虑 Aut(K/k)↷K

σ.a = σ(a), ∀a ∈ K,σ ∈ Aut(K/k)

∀f(x) ∈ k[x],RootK(f) = {a ∈ K|f(a) = 0} 是一个有限集，我们可以将群作用限制在 RootK(f) 中，因
为 σ(a) ∈ RootK(f)

更进一步，取 K/k 为 f(x) 的分裂域，则 Aut(K/k)↷RootK(f) 有群同态

Aut(K/k)
ρ−→ S(RootK(f))

σ 7−→ σ|RootK(f)

(1) ρ 是单射

Proof : 验证 Ker(ρ) = {Id}，即验证若 σ|RootK(f) = Id，则 σ = IdK
(2) 若 f(x) 在 k 上不可约，则 ψ 是可迁的，即 ∀a, b ∈ Rootk(f)，存在 ∃σ ∈ Aut(K/k), s.t. σ(a) = b

Proof : 考虑延拓定理，因为 a, b ∈ RootK(f)，所以存在 Idk 的延拓 δ : k(α)
∼→ k(β) 满足 δ(α) = β，

由 K/k 是 f 的分裂域知，可将 δ 延拓到 K 上的域同构 σ，且 σ|k(α) = δ，如下图

K K

k(α) k(β)

k k

σ
∼

δ:α 7→β

∼

Idk
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例 4.51 GL2(F2) =

{(
a b

c d

)∣∣∣∣∣a, b, c, d ∈ F2

}
，有群作用 G = GL2(F2)

↷(F2)
2 记作
==== V

(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)

有两个 G-轨道：
{(

0

0

)}
,

{(
0

1

)
,

(
1

0

)
,

(
1

1

)}
def
= X

Ex 证明存在群同构 ρ : G→ S(X)

定理 4.5.2 设有左作用 G↷X, 对 ∀x ∈ X, 存在双射

f : G/Gx
1:1←→ Ox

aGx 7−→ a.x

实际上是 G-集间的同构

评价 对集合间的双射 X
f→ Y , 以及群作用 G↷X,G↷Y , 称 f 与 G-作用相容, 若

f(g.x) = g.(f(x)), ∀x ∈ X, g ∈ G

因此 G/Gx → Ox 实际上是 G-集的双射，即
• G/Gx

f→ Ox 是双射

• 相容性:

f(g.hGx) = f(ghGx) = gh.x

g.(f(hGx)) = g.(h.x) = gh.x

证明 良定性: 设 aGx = bGx, 则 b−1a ∈ Gx, ∃h ∈ Gx, s.t. a = bh, 故

a.x = (bh).x = b.(h.x) = b.x

所以映射是良定的, 且它是单射, 假设 a.x = b.x, 则 (b−1a).x = x =⇒ b−1a ∈ Gx =⇒ aGx = bGx

最后由定义, 它显然是满射 □

推论 4.5.1（轨道-稳定化子公式）
|G| = |Ox| · |Gx|

特别地, |Ox|
∣∣ |G|

定义 4.5.6（忠实作用）设 G↷X 是忠实的, 若 ∀1G 6= g ∈ G, ∃x ∈ X, s.t. g.x 6= x ; 换句话说, 称
G↷X 是忠实的, 则定理 4.5.1 中对应的群同态

ρ : G −→ S(X)

g 7−→ ρ(g) = g.x
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是单射, 也等价于说群作用 G↷X 的核 N = Kerρ = {1G}

Ex 证明 Kerρ =
⋂
x∈X

Gx

例 4.52 左正则作用 G↷G

G×G −→ G

(g, a) 7−→ g.a = ga

是忠实的. 因此有 Cayley 定理：G ↪→ S(G) 是单射（进而 G 与 S(G) 的一个子群同构）

定义 4.5.7（自由作用）称 G↷X 是自由的, 若 Gx = {1G}, ∀x ∈ X. 此时 |Ox| = |G|, 进而

|X| =
∑
i∈I

|Ox| =⇒ |G|
∣∣ |X|

例 4.53 设 H ≤ G, 考虑左正则作用 H↷G

H ×G −→ G

(h, a) 7−→ h.a = ha

它是自由作用, 因为 ∀a ∈ G
Ga = {h ∈ H : ha = a} = {1H}

因此 |H|
∣∣ |G|, 再次证明了拉格朗日定理

定义 4.5.8（平凡群作用）称 G↷X 是平凡的, 若 ∀g ∈ G, x ∈ X, g.x = x, 即 Gx = G. 此时
ρ : G→ S(X), ∀g 7→ IdX

例 4.54 G↷X, 它的不动点集为

XG = {x ∈ X|g.x = x, ∀g ∈ G}

若 XG 6= ∅, 则 G↷(XG) 是平凡的

定义 4.5.9（共轭作用）共轭作用定义为 G↷X = G

G×G −→ G

(g, x) 7−→ gxg−1

(1) 共轭作用是平凡的 ⇐⇒ G 是 Abel 群
(2) x ∈ G 的（共轭）轨道为 x 的共轭类, 记为

Cx = {gxg−1|g ∈ G}
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由轨道-稳定化子公式知 |Cx|
∣∣ |G|

(3) Cx = {x} ⇐⇒ x ∈ Z(G), 其中 Z(G) 为群 G 的中心

(4) x 的稳定化子为 Z(x) = {g ∈ G|gx = xg} = {g ∈ G|gxg−1 = x} ≤ G, 称为 x 的中心化子

Ex Z(G) =
⋂
x∈G

Z(x)

推论 4.5.2（共轭作用下的轨道-稳定化子公式）在共轭作用下,Z(x) 为 x 的稳定化子/中心化子,Cx
为 x 的轨道/共轭类, 则

|G| = |Cx| · |Z(x)|

命题 4.5.1（类公式）按共轭类的元素个数多少分为两种: 个数 ≤ 1 和 > 1

|G| = |Z(G)|+
∑

x:|Cx|>1

|Cx|

例 4.55 计算 A4 3 (123) 的共轭类的大小 |C(123)|
因为 |A4| = |C(123)| · |Z

(
(123)

)
|, 显然任意一个元素, 它都在自己的中心化子中, 即 (123) ∈ Z

(
(123)

)
,

所以
(
(123)

)
⊂ Z

(
(123)

)
=⇒ Z

(
(123)

)
≥ 3, 又因为

σ(123)σ−1 = (σ(1)σ(2)σ(3)) = (123)

该方程至多只有三组解, 所以 Z
(
(123)

)
= 3, 进而 |C(123)| = 12

3
= 4

定义 4.5.10（p 群）设 p 是素数, 称 G 为 p-群, 若 |G| = pn, n ≥ 1

评价 若 |G| = p, 则 G ' µp, 即 G 是循环群

命题 4.5.2 p-群一定有非平凡中心

证明 设 |G| = pn, 则 |Z(G)| = pr, r > 0, 若 |Z(G)| = 1, 由类等式得

|G| = 1 +
∑

|Cx|>1

|Cx|

又因为 |Cx| | pr, |Cx| > 1, 故 p | Cx, 这就导致上式左边是 p 的倍数, 右边不是 p 的倍数, 矛盾 □

命题 4.5.3 p2 阶群是 Abel 群, 且同构于 (Zp2 ,+) 或 Zp × Zp

证明 因为 p 群一定有非平凡中心, 所以 ∃1 6= g ∈ Z(G), 则 Ord(g) = p 或 p2

Case 1. Ord(g) = p2, 则 G ' (Zp2 ,+)
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Case 2. Ord(g) = p, 则 H = (g) = {1, g, · · · , gp−1} ≤ G, 取 g1 /∈ H, s.t. Ord(g1) = p（否则

Ord(g1) = p2, 回到 Case 1. ）, 则 (g, g1) = G（由 Lagrange 定理, 因为 p + 1 ≤ |(g, g1)| ≤ p2, 且
|(g, g1)|

∣∣ |G| = p2, 所以 (g, g1) = G）. 实际上由 g ∈ Z(G) 知

(g, g1) = {gigj1|0 ≤ i, j ≤ p− 1}

记 K = (g1), 考虑映射
Φ : H ×K −→ G

(h, k) 7−→ hk

由下面的练习即得证 □

Ex 证明 Φ 是同态

例 4.56 考虑共轭作用

S↷
4 X = {(12)(34), (13)(24), (14)(23)}, g.x = gxg−1

则有群同态 S4
ρ→ S(X) ' S3

Ex 算 Kerρ

例 4.57 设 H ≤ G, 考虑群作用

G↷XH = {H ′ ≤ G|H ′与H共轭}, g.H ′ = gH ′g−1

H 的稳定化子为

H ⊆ NG(H) = {g ∈ G|gHg−1 = H}

也称为 H 的正规化子

Fact
H ⊴G ⇐⇒ NG(H) = G

⇐⇒ XH = {H}

且我们有 |G| = |XH | · |NG(H)|

§ 4.6 Sylow 定理

定义 4.6.1（Sylow 子群）设 |G| = prm, p - m, 子群 P ≤ G 称为 G 的 Sylow p-子群, 若 |P | = pr

评价 [G : P ] = m

定理 4.6.1（Sylow 定理）设 |G| = prm,m - m, r ≥ 1, 则
(1) Sylow p-子群总存在
(2) Sylow p 子群间相互共轭
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(3) Sylow p-子群的个数为 m 的因子, 且形如 kp+ 1

(4) ∀p-子群 B ≤ G, 总存在某个 Sylow p-子群 P, s.t. B ⊂ P

证明 只证明 Sylow p-子群的存在性. 设 |G| = prm, p - m
ClaimClaimClaim: ∃P ≤ G, |P | = pr

考虑所有 G 的 pr 阶子集全体 X = {U ⊂ G : |U | = pr} ⊂ P(G), 考虑左正则作用 G↷X

G×X −→ X

(g, U) 7−→ g.U = gU

注意到

|X| =
(
prm

pr

)
=
prm(prm− 1) · · · (prm− pr + 1)

pr(pr − 1) · · · 1

对 ∀1 ≤ j ≤ pk − 1, 设 j = ptj1, 其中 (p, j1) = 1, 则prm− j = prm− ptj1 = pt(pr−tm− j1)

pr − j = pr − ptj1 = pt(pr−t − j1)

因为 (p, j1) = 1, 所以 p - pr−tm− j1, p - pr−t − j1, 故 p - p
r−tm−j1
pr−t−j1 = prm−j

pr−j , 所以 p - |X|.
将 X 写为轨道的无交并

X =
⊔
U∈I

OU

则 ∃U, s.t. p - |OU |, 考虑 GU = {g ∈ G|gU = U} ≤ G, 由轨道-稳定化子公式

|G| = |GU | · |OU |

因此 GU = pr ·m′,m′ | m
此外, 考虑群作用 GU

↷U

GU × U −→ U

(g, x) 7−→ g.x = gx

它是自由作用, 因为由 gU = U 知,∀g ∈ GU , x ∈ U, ∃!y ∈ U, s.t. gx = y, 即 ∀x ∈ U,Gx = {g ∈ GU |gx =

x} = {1G}. 因此 |GU |
∣∣ |U | = pr, 所以 |GU | = pr, 故 GU 就是我们要找的 Sylow p-子群 □

证明（Sylow p-子群的存在性, 另证）
Step 1. 由 Cayley 定理, 存在群嵌入 G ↪→ S(G) ' Sn 且还有 Sn ↪→ GLn(Fp), 故有群嵌入 G ↪→

GLn(Fp)
Step 2. 计算 |GLn(Fp)| = p

n(n−1)
2 ·m, p - m

Step 3. 由线性代数的知识, 考虑对角元均为 1 的上三角阵构成的集合

U =



1 ∗ ∗

. . . ∗
1



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显然它的阶为 p
n(n−1)

2 , 故它是 GLn(Fp) 的 Sylow p-子群
Step 4. 将 G 视为 GLn(Fp) 的子群, 由下面的练习即证 □

Ex 验证 |GLn(Fp)| =
n∏
k=1

(pn − pk−1)

Ex 设 H ≤ K,U ≤ K 是 K 的 Sylow p-子群, 则 ∃g ∈ K, s.t. H ∩ gUg−1 为 H 的 Sylow p-子群
Hint: 考虑群作用 H↷(K/U)

例 4.58 |S4| = 24 = 3123, 恰有 4 个 Sylow 3-子群

考虑 S4 的 Sylow 2-子群, 即 8 阶子群, 由 Sylow 定理知 |8阶子群| =

3 的因子

2k + 1
, 故恰有 3 个 Sylow

2-子群, 且它们三个相交即为 K4

(12) (13)

(14)

K4

命题 4.6.1 108 阶群非单群

证明 因为 |G| = 108 = 2233, 则 Sylow 3-子群, 即 27 阶子群总存在, 取 P ≤ G, s.t. |P | = 27, 考虑左诱
导作用

G↷G/P, (g, aP ) = gaP

则有群同态

ρ : G −→ S(G/P ) ' S4

g 7−→ ρ(g) : aP 7→ gaP

由群同态基本定理 G/Kerρ ' Imρ 因为
(1) Imρ 6= {IdS(G/P )}, 否则 ∀g ∈ G, ρ(g) = IdS(G/P ), 那么对 ∀a, g ∈ G 就有 gaP = aP =⇒ a−1ga ∈ P ,
显然矛盾! 所以 Kerρ 6= G

(2) Imρ ≤ S(G/P ), 故 |Imρ| ≤ |S(G/P )| = 24, 所以 Kerρ 6= {1G}
所以 Kerρ⊴G, 故 108 阶群非单群 □

命题 4.6.2 |G| = 35, 则 G 循环
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证明 因为 |G| = 35 = 5× 7, 则 
|5阶子群| =

7的因子

5k + 1
= 1

|7阶子群| =

5的因子

7k + 1
= 1

则 ∃!P,Q◁G, |P | = 5, |Q| = 7, 且由于 5, 7 阶子群个数为 1 知,P,Q 一定正规. 考虑

φ : P ×Q −→ G

(h, g) 7−→ hg

可以证明 P ∩Q = {1G}, 由下面的练习即得证 □

Ex 证明上述 φ 是同态

例 4.59 设 |G| = ps11 · · · pstt , 其中 pi 为两两不同的素数, 若 G 是 Abel 群, 则存在唯一 Sylow pi-子群 Pi,
使得如下群同构成立

P1 × P2 × · · · × Pt
∼−→ G

(a1, a2, · · · , at) 7−→ a1a2 · · · at

Ex 证明上面的群同构

评价 有限 Abel 群的结构问题归结于 Abel p-群的结构问题

定理 4.6.2（Cauchy）设 p | |G|, 则 G 有 p 阶元, 进而 G 有 p 阶子群

证明 由 Sylow 定理,G 有 Sylow p-子群 P , 设 |P | = pr, 任取 g ∈ P\{1G}, 则 Ord(g) = pa, 1 ≤ a ≤ r
Claim:Claim:Claim: Ord(gpa−1

) = p

一方面 (gp
a−1

)p = gp
a

= 1, 故 Ord(gpa−1

) | p. 另一方面设 Ord(g) = d, 则

(gp
a−1

)d = gdp
a−1

= 1 =⇒ pa | dpa−1 =⇒ p | d

因此 Ord(gpa−1

) = p □

例 4.60 设 |G| = 56, 则 G 非单

证明 因为 |7阶子群| =

8 的因子

7k + 1
= 1或8

Case 1. 仅有一个 7 阶子群, 则它一定是正规子群
Case 2. 有 8 个 7 阶子群 H1, · · · ,H8, 因为 7 阶群一定是循环群, 所以 Hi ∩ Hj = {1G}, 否则

Hi = Hj. 因此
|H1 ∪ · · · ∪H8| = 1 + (7− 1)× 8 = 49

这上面 49 个元素, 除了 1, 其余元素阶数均为 7. 又由 Sylow 定理,G 一定有 Sylow 2-子群, 即 8 阶子

群, 而 8 阶群中元素的阶不可能为 7, 所以除去上面 49 个元素, 剩下的 7 个元素加上 1G 恰好构成 G 的

Sylow 2-子群 Q◁G, 且由上分析知 Q 恰只有一个, 故 Q 是正规子群 □
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§ 4.7 自由群与群的表示
目标: 将任意群 G 表示为 G = F/N,F 是自由群,N ◁ F

定义 4.7.1（字）设 X 6= ∅, 考虑 X 的形式逆 X−1 = {x−1|x ∈ X}, 称 X tX−1 为字母集合, 定义
1. 字 Word

w = x1x2 · · ·xn, xi ∈ X tX−1

2. 字 ω 称为即约的 reduced, 若 xi 6= x−1
i−1, ∀i ≥ 2, 即相邻元素不能消去

3. 称即约的两个字 x1 · · ·xn, y1 · · · ym 相等, 若 n = m,xi = yi, ∀i
4. 若 n = 0, 定义 ω = 1 为空字

评价 约定 x2 = xx, 其余幂次类似

例 4.61 设 X = {x, y}, xyx−1y 是即约的, xyy−1x 不即约, 它的即约形式为 x2

Fact 任意字可以约化为唯一的即约字

Ex 证明上述事实, voluntary

例 4.62 xy−1yy−1xxx−1y = xy−1xy

定义 4.7.2（自由群）集合 X 的自由群

F (X) = {所有以X tX−1中元素构成的字}

= {x1 · · ·xn|xi ∈ X tX−1, 1 ≤ i ≤ n, n ∈ N}

自由群的结合律蕴含了即约的唯一性. 它的乘法规定为字的连接以及即约化
若 |X| < +∞, 我们称 F (X) 为有限生成自由群

评价 (w1 ·w2) ·w3 和 w1 · (w2 ·w3) 是否相等？本质上化为 w1w2w3 经过约化后表达是否唯一, 这点由上
面的事实保证

例 4.63 (xyx) · (x−1y−1x) = x2

例 4.64 若 X = {a}, 则
F (X) = {· · · , a−2, a−1, 1, a, a2, · · · } ' (Z,+)

一个元素的集合的自由群同构于无限循环群

例 4.65 若 X = {x, y}, 则

F (X) =


1

x, y, x−1, y−1

x2, y2, x−2, y−2, xy, yx, x−1y, yx−1, xy−1, yx−1, x−1y−1, y−1x−1

· · · · · · · · ·


长度为 2 的字有 12 个；长度为 3 的字有 36 个
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命题 4.7.1（自由群的泛性质）给定群 G 以及集合 X, 对任意映射 f : X → G, 可将 f 唯一延拓为

群同态

f̃ : F (X) −→ G

使得 f̃ |X = f , 即下面的图交换

G

X

F (X)

f

inc

f̃

证明 存在性：对 ∀x ∈ X, 定义 f̃(x) = x, f̃(x−1) = f(x)−1, 给定一个字 x1 · · ·xn, 定义

f̃(x1 · · ·xn) = f̃(x1) · · · f̃(xn)

□

推论 4.7.1 任意群 G 都是某个自由群的商群

证明 取 X ⊂ G 是 G 的生成元集, 考虑群嵌入 inc : X ↪→ G, 由泛性质知, 存在 inc 的延拓

ĩnc : F (X)→ G

由 X 是 G 的生成元集知它是满射, 由群同态基本定理知,G 与 F (X) 的某个商群同构 □

定义 4.7.3（群的有限表现）群的有限表现是指

G =< x1, · · · , xn | r1, · · · , rm >

其中 x1, · · · , xn 为生成元,ri ∈ F (x1, · · · , xn) 是关系, 即为由生成元组成的字, 定义为

F (x1, · · · , xn)/N(r1, · · · , rm)

其中 N(r1, · · · , rm) 是包含 r1, · · · , rm 的 F (x1, · · · , xn) 的最小正规子群, 实际上根据商群的定义,G
也可以写为

G =< x1, · · · , xn | r1 = 1, · · · , rm = 1 >

Ex 证明 N(r1, · · · , rm) = (ωrjω
−1 | 1 ≤ j ≤ m,ω ∈ F (x1, · · · , xn))
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命题 4.7.2 设 G =< x1, · · · , xn | r1, · · · , rm >, 记 X = {x1, · · · , xn}, 设 H 是群, 若有映射

f : X → H

则 f 可延拓为群同态 G
f̃→ H ⇐⇒ f(x1), · · · , f(xn) 在 H 中满足关系 r1, · · · , rm

例 4.66 < g | gd >= F (g)/N(gd) ' µd, 设 H 是群, 考虑映射

f : {g} −→ H

g 7−→ f(g)

由命题 4.7.2,f 可延拓为 f̃ : F (g)→ H 当且仅当 f̃(g) = f(g) 在 H 中满足关系 gd, 即 f(g)d = 1H

且我们有 N(gd) ⊂ Ker(f̃)

例 4.67 G =< x, y | x2, y2, (xy)3 >= F (x, y)/N(x2, y2, (xy)3)

Claim:Claim:Claim: 任意群 H, 任意映射 f : {x, y} → H,x 7→ f(x), y 7→ f(y), 若 f(x)2 = 1H , f(y)
2 =

1H ,
(
f(x)f(y)

)3
= 1H , 则存在唯一群同态

f̃ : G −→ H

x̄ 7−→ f(x)

ȳ 7−→ f(y)

此时视 G = F (x, y)/N(x2, y2, (xy)3) 为商群, 其中 x̄ = xN, ȳ = yN

评价 由商群的定义,x̄2 = 1̄, ȳ2 = 1̄, (x̄ȳ)3 = 1, 可以验证 G ' S3, 此外 G 还可以写为

G =< a, b | a2 = 1 = b2, aba = bab >

=< a, b | a2, b2, abab−1a−1b−1 >

评价 天才不坐在教室里

Fact 设 G =< x, y | x2, y2, (xy)3 >, 证明 G ' S3

证明 考虑

{x, y} f−→ S3

x 7−→ (12)

y 7−→ (13)

由泛性质, 存在 f 的延拓

F (x, y)
f̃−→ S3

x 7−→ (12)

y 7−→ (13)

因为 x2 7→ (12)2 = Id, y2 7→ (13)2 = Id, (xy)3 7→ Id, 所以 N(x2, y2, (xy)3) ⊂ Kerf̃ , 则 f̃ 诱导满射, 此处
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仍记为 f̃

f̃ : F (x, y)/N(x2, y2, (xy)3) −→ S3

x̄ 7−→ (12)

ȳ 7−→ (13)

记 G = F (x, y)/N(x2, y2, (xy)3)

Claim:Claim:Claim: G = {1, x, y, xy, yx, xyx}
对 ∀ω ∈ LHS, 若 ω 的长度小于等于 2, 则 ω = 1, x, y, xy, yx 首先有 x−1 = x, y−1 = y, 若 ω 的长

度小于等于 2, 则 ω = 1, x, y, xy, yx 因此长度大于 2 的元素一定形如

ω = xyxyxyxyx · · · 或 yxyxyxyxy · · ·

再利用 (xy)3 = 1 知, 长度大于 2 的元素只能是 xyx = yxy（因为长度为 4, 5 的元素可以进一步化简）,
故群 G 的大小 |G| ≤ 6, 所以断言得证 □

例 4.68 D6 = {g ∈ O2 | g保正六边形}, 其中共有 6 个旋转,6 个对称
1. 设 a ∈ D6,Ord(a) = 6 为旋转的生成元, 则六个旋转为 a, a2, · · · , a5, a6 = Id

2. 设 b =

(
1 0

0 −1

)
, b2 = 1, 则 b, ba, · · · , ba6−1 均为对称（行列式为 −1）

因此我们找到了 D6 的生成元 a, b, 它们满足 a6 = 1, b2 = 1, (ba)2 = 1

定义 G =< x, y | x6, y2, (xy)2 >= F (x, y)/N(x6, y2, (xy)2), 它的生成元为 x, y

接下来证明 G ' D6

Step 1. 考虑满射
f : G −→ D6

x 7−→ a

y 7−→ b

Step 2. 证明 |G| ≤ 12

Claim:Claim:Claim: G = {xiyj | 0 ≤ i ≤ 5, 0 ≤ j ≤ 1}
因为 (xy)2 = 1, 所以 yx = x−1y−1 = x5y, 故对 ∀1 ≤ j ≤ 5, 有

yxj = yx · xj−1 = x5yx · xj−2 = x10y · xj−2 = x4y · xj−2

故不断进行上述过程, 可以将 G 中的元素写为 RHS 的形式, 进而断言得证, 故 |G| ≤ 12, 且由 f 是满射

知,f 是双射, 且保运算, 故 G ' D6

Ex 证明 < s, t | s2, t2, (st)6 >' D6

例 4.69 四元数群 Q8

Q8 的来源：H = R⊕Ri⊕Rj⊕Rk,有一组基 {1, i, j, k}满足 i2 = j2 = k2 = −1, ij = k, jk = i, ki = j,
可以证明 H 是非交换结合环, 可除环, 记 H× = H\{0}, 定义

Q8 = {±1,±i,±j,±k} ≤ H×

则 Q8 是 8 阶非 Abel 群

98



近世代数 (H) 课堂笔记 § 4.8 有限生成 Abel 群

在 Q8, i
4 = 1 = j4, i2 = j2 = −1, ji = −ij = i3j, 令

G =< x, y | x4 = 1, x2 = y2, yx = x3y >=
F (x, y)

N(x4, x2y−2, yxy−1x−3)

存在满射
f : G −→ Q8

x 7−→ i

y 7−→ j

类似可以证明这是同构

评价 D4 = Σ(□) 和 Q8 都是 8 阶群, 但是 D4 只有两个 4 阶元, 但 Q8 有六个 4 阶元, 故它们不同构

评价 书上对 Q8 的定义比较诡异, 较为反人类, 给当时的小伍造成了心理阴影

§ 4.8 有限生成 Abel 群
在本节中，约定群 A 的运算为加法，零元为 0，a 的负元为 −a，a 的幂次为 na

例 4.70 (Z,+), (Zn,+) 均为 Abel 群

定义 4.8.1（加法群的直和）设 (A,+), (B,+) 为两个加法群，定义（约定）它们的直和为

A⊕B = A×B

零元为 (0A, 0B)

例 4.71 ∀n ≥ 1，定义

Zn = Z⊕ Z⊕ · · · ⊕ Z =

{(
a1 · · · an

)T ∣∣ai ∈ Z
}

零元定义为 (0, · · · , 0)T，负元定义为每个分量的负元

Fact Zn 由 e1, · · · , en 生成，其中 ei 为第 i 个元素为 1 的单位向量. 即 ∀v ∈ Zn 可写成 e1, · · · , en
的整线性组合 (

a1 · · · an

)T
=

n∑
i=1

aiei

定义 4.8.2（有限基）对于加法群 A，称 S ⊆ A, |S| < +∞ 为有限基，若
1. S 生成 A，即 ∀a ∈ A, ∃ai, 1 ≤ i ≤ n ∈ Z, s.t. a = a1s1 + · · ·+ ansn, ai ∈ Z, si ∈ S
2. S 是 Z-线性无关的，即 ∀s1, · · · , sn ∈ S，若 0A = a1s1 + · · ·+ ansn, ai ∈ Z，则 ∀i, ai = 0

例 4.72 并非所有加法群都有基！考虑 (Zn,+)，则 ∀a ∈ Zn, na = 0，故 {a} 自身 Z-线性相关

Fact {e1, · · · , en} 是 Zn 的一组基
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命题 4.8.1 A 有有限基 ⇐⇒ ∃n ∈ N, s.t. A ' Zn

证明 (⇐=) 设有同构 θ : A→ Zn，则

{θ−1(e1), · · · , θ−1(en)}

是 A 的一组基

(=⇒) 设 A 有基 S = {s1, · · · , sn}，考虑映射

θ : Zn −→ A(
a1 · · · an

)T
7−→

n∑
i=1

aisi

可以验证它是群同构 □

定义 4.8.3（秩）若 A ' Zn，则称 A 为秩 n 的自由 Abel 群

评价 区分与自由群的概念，“秩 n 的自由 Abel 群”是一个新概念

Ex 证明 Zn '< x1, · · · , xn | xixj = xjxi, ∀i 6= j >

目标：分类有限生成的 Abel 群（有限生成即 ∃S ⊆ A, |S| < +∞, S 生成 A）

Fact 对于有限生成 Abel 群 A，一定存在正整数 n，使得 A 同构于 Zn 的某个商群，即 ∃K ≤ Zn, s.t.

A ' Zn/K

证明 设 S = {s1, · · · , sn} 为 A 的一个生成元集合，考虑满射

φ : Zn −→ A = (S)(
a1 · · · an

)T
7−→

n∑
i=1

aisi

由同态基本定理，Zn/Kerφ ' A □

评价 注意区分有限生成和有限基这两个概念，如 Zn 是有限生成的，它有生成元 {1}，但是它却没有有
限基（上面论述过了）

Fact 设 K ≤ Zn，则 K 是有限生成的

证明 对 n 进行归纳

• n = 1 时，K ≤ Z =⇒ K = mZ,m ≥ 0

• n = 2 时，设 K ≤ Z⊕ Z = Ze1 ⊕ Ze2，其中

Ze1 = {(n, 0)|n ∈ Z}, Ze2 = {(0, n)|n ∈ Z}
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因为 (K ∩ Ze1) ≤ Ze1 ' Z，因此 K ∩ Ze1 是有限生成的，由第二同态定理

K/(K ∩ Ze1) ' (K + Ze1)/Ze1 ≤ Z2/Ze1 ' Z

所以 K/(K ∩ Ze1) 是有限生成的，由下面的练习即可证明 K 是有限生成的

• 对于一般的 n，由数学归纳法约化到 n = 2 的情形（小伍：我就不证了） □

Ex 假设 N ≤ G,N 是有限生成的，G/N 也是有限生成的，则 G 是有限生成的

约定记号

Mn×m(Z) =
{(

aij

)
n×m

∣∣∣∣aij ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

Fact 给定 A ∈Mn×m(Z)
φA : Zm −→ Zn

v 7−→ Av

是 Abel 群同态，也称为 Z-线性映射，φA(e(m)
i ) 为 A 的第 i 列

Fact 任意群同态 θ : Zm → Zn 都形如 φA

证明 考虑

A =
(
θ(e1) · · · θ(em)

)
可以验证 θ = φA □

综上，我们将上述事实总结为如下命题

命题 4.8.2 存在双射
Mn×m(Z) −→ Hom(Zm,Zn)

A 7−→ φA

Fact 给定 Bp×n, An×m，有复合同态

Zm ϕA−→ Zn ϕB−→ Zp

φB ◦ φA = φBA，即同态的复合与矩阵乘法一一对应

命题 4.8.3 若 Zn ' Zm，则 n = m，即自由 Abel 群的秩的定义4.8.3是合理的

证明 存在 B ∈Mm×n(Z), A ∈Mn×m(Z)，使得如下群同构成立

φB : Zn −→ Zm φA : Zm −→ Zn

由群同构知 φAB = φA ◦ φB = IdZn，故 AB = In，同理 BA = Im，则

n = tr(AB) = tr(BA) = m
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□

定义 4.8.4（余核）设 A ∈Mn×m(Z), φA : Zm → Zn, Im(φA) ≤ Zn，称

Coker(φA)
def
= Zn/Im(φA)

为 φA 的余核；更一般地，若 f : A→ B 是 Abel 群之间的同态，称商群 B/Im(f) 为 f 的余核，记

为 Coker(f)

评价 φA 是满射 ⇐⇒ Coker(φA) = {0} 是平凡的

Key Fact 有限生成的 Abel 群 G 均同构于 Coker(φA)，其中 A 是某个系数为整数的矩阵

证明 因为 G 同构于 Zn 的某个商群，即 G ' Zn/K，且 K 有限生成，假设由 {v1, · · · ,vm} 生成，令
A =

(
v1 · · · vm

)
n×m
，则

φA : Zm −→ Zn

ei 7−→ vi

因此 ImφA = K，故 G ' Zn/K = Coker(φA) □

定义 4.8.5（可逆整方阵）

GLn(Z)
def
= {A ∈Mn(Z)|∃B ∈Mn(Z), s.t. AB = In = BA}

= {A ∈Mn(Z)| det(A) = ±1}

Ex A ∈Mn(Z)，则 A ∈ GLn(Z) ⇐⇒ φA : Zn → Zn 是群同构

评价 由练习知 GLn(Z) ' Aut(Zn)，但是 GLn(Z) 比较神秘，因为整系数方阵不能打洞

评价 小伍：我的品味不偏

定义 4.8.6（Z-相抵）设 A,B ∈Mn×m(Z)，称 A,B Z-相抵，若

B = PAQ

其中 P ∈ GLn(Z), Q ∈ GLm，容易验证 Z-相抵是 Mn×m(Z) 上的等价关系

Key Fact 若 A,B 相抵，则 Coker(φA) ' Coker(φB)

证明 由相抵可设 B = P−1AQ,P ∈ GLn(Z), Q ∈ GLm(Z)，则下面的（左半边）图交换，即 φA ◦ φQ =

φP ◦ φB

Zm Zn Coker(φA)

Zm Zn Coker(φB)

ϕA can

ϕB

ϕQ ϕP

can

ΦP
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考虑映射
ΦP : Coker(φB) −→ Coker(φA)

v 7−→ φP (v)

补充验证 ΦP 的良定性：假设 v = v′，则 v − v′ ∈ Im(φB)，因此 ∃µ ∈ Zm, s.t. φB(µ) = v − v′，所以

φP (v − v′) = φP ◦ φB(µ) = φA ◦ φQ(µ) ∈ Im(φA)

所以 ΦP (v − v′) = φP (v − v′) = 0，故 ΦP (v) = ΦP (v
′)

Ex 验证 ΦP 是群同构

□

定理 4.8.1（Smith 标准型）设 A ∈Mn×m(Z)，则 A Z-相抵于，即 ∃P ∈ GLn(Z), Q ∈ GLm(Z), s.t.

P−1AQ =

(
D O

O O

)

其中 D = diag(d1, · · · , dr), 1 ≤ d1 | d2 | · · · | dr, r = rank(A)，称 B 为 A 的 Smith 标准型

证明 考虑行/列变换
1. 互换行/列
2. 第 i 行乘以 a ∈ Z 加到第 j 行上，第 i 行不变

3. 行/列乘以 ±1

Claim：Claim：Claim：A ∼
(
d1 O

O A′

)
，且 d1 | A 的所有分量

（证明过于复杂，掌握算法即可）最后由数学归纳法即证 □

例 4.73 设 Z2 中
(
2 6

)T
,
(
4 5

)T
生成的子群为 K，则 |Z2/K| =？

将 A =

(
2 4

6 5

)
化为 Smith 标准型(

2 4

6 5

)
∼

(
2 4

0 −7

)
∼

(
2 0

0 7

)
∼

(
2 7

0 7

)
∼

(
2 7

0 7

)
∼

(
2 1

0 7

)
∼

(
1 2

7 0

)
∼

(
1 0

0 14

)
= B

实际上 K = Im(φA)，所以

Z2/K = Coker(φA) ' Coker(φB) = Z2

/{(
a

14b

)∣∣∣∣∣a, b ∈ Z

}
' Z2/Z⊕ (14Z) ' Z/Z⊕ (Z/14Z) = {0} × Z14

所以 |Z2/K| = 14（第二行由下面的练习保证，讲到这里的时候下课了）
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回顾关键事实

Key Fact 有限生成的 Abel 群 G 均同构于 Coker(φA)，其中 A 是某个矩阵

假设 B = diag(d1, · · · , dr, 0, · · · , 0) 是 A 的 Smith 标准型，考虑

φB : Zm −→ Zn

ei 7−→ diei, 1 ≤ i ≤ r

ei 7−→ 0, i > r

则

Im(φB) =

{(
d1a1 · · · drar 0 · · · 0

) ∣∣∣∣ai ∈ Z
}

= d1Z1 × · · · × drZ× 0Z× · · · × 0Z ⊂ Zn

进而由下面的练习知

Coker(φA) ' Coker(φB) ' (Zd1 ⊕ · · · ⊕ Zdr)⊕ Zn−r

Ex G1, · · · , Gn 是群，N1 ◁G1, · · · , Nn ◁Gn，则

1. (N1 × · · · ×Nn)◁ (G1 × · · · ×Gn)
2. (G1×···×Gn)

(N1×···×Gn)
' (G1/N1)× · · · × (Gn/Nn)

总结如下

定理 4.8.2（有限生成 Abel 群的结构定理）任意有限生成的 Abel 群 G，则

G ' (Zd1 ⊕ · · · ⊕ Zdr)⊕ Zs

其中 s ≥ 0, 1 | d1 | · · · | dr ，特别地若 |G| < +∞，则

G ' Zd1 ⊕ · · · ⊕ Zdr

其中 1 | d1 | · · · | dr

证明

Step 1. ∃A ∈Mn×m(Z), s.t. G ' Coker(φA)
Step 2. A ∼ B，其中 B 为 Smith 标准型，Coker(φB) 可算！ □

推论 4.8.1 设 A ∈Mn(Z), det(A) 6= 0，则 |Coker(φA)| < +∞，且 |Coker(φA)| = | det(A)|

证明 A 有 Smith 标准型 B = diag(d1, · · · , dn)，且 | det(A)| = | det(B)| = d1 · · · dn，且

Coker(φA) ' Coker(φB)

' Zd1 ⊕ · · · ⊕ Zdn
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故 |Coker(φA)| = d1 · · · dn = | det(A)| □

推论 4.8.2 设 K ≤ Zn（因此 K 是有限生成的），则

(1) ∃Zn 的基 {v1, · · · ,vn} 和 d1 | · · · | dr, r ≤ n，使得 K 恰以 d1v1, · · · , drvr 为基，因此 K 也是

有限生成自由 Abel 群，且 rank(K) = r ≤ n
(2) Zn/K ' Zd1 ⊕ · · · ⊕ Zdr ⊕ Zn−r

证明 (1). 因为 K 是有限生成的，设生成元为 ξ1, · · · , ξm，考虑

A =
(
ξ1 · · · ξm

)
n×m

考虑映射
φA : Zm −→ Zn

ei 7−→ ξi(A 的第 i 列)

所以 ∃A ∈Mn×m(Z), s.t. K = Im(φA)，设 B = P−1AQ，其中 B 为 A 的 Smith 标准型

Zm Zn

Zm Zn

ϕA

ϕB

ϕQ ϕP

取 Zn 的标准正交基 {e1, · · · , en}，则 {d1e1, · · · , drer} 为 Im(φB) 的一组基，设 P =
(
v1 · · · vn

)
，

由 B 可逆知 {v1, · · · ,vn} 是 Zn 的一组基，因为

Im(φA) = φP (ImφB) =< φP (d1e1), · · · , φP (drer) >=< d1v1, · · · , drvr >

因此 K 恰以 {d1v1, · · · , drvr} 为基
(2). 是自然的推论 □

定义 4.8.7（扭子群） (G,+) 中的有限阶元称为扭元 (torsion element)，定义 (G,+) 的所有有限阶

元构成的集合为 G 的扭子群（可以验证它确实是群），记为

t(G) = {g ∈ G : g有限阶} ≤ G

若 G 没有扭元 (torsion free)，即 t(G) = {0G}，称 G 为无扭群；若 G = t(G)，则称 G 为扭群

例 4.74 (Z,+), (Q,+) 无扭；Q\Z 是扭群

Ex 有限生成的扭群是有限的

定理 4.8.3 设 G 是有限生成 Abel 群，则存在内直和分解

G = t(G)⊕ F
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使得 F 是有限生成的自由 Abel 群，称为 t(G) 的补；且 |t(G)| < +∞, t(G) ' Zd1 ⊕ · · · ⊕ Zdr

证明 有群同构

θ : G ' (Zd1 ⊕ · · · ⊕ Zdr)⊕ Zs

记 (Zd1 ⊕ · · · ⊕ Zdr)⊕ Zs = R，因为 Zs 中除 0 外没有扭元，所以 t(R) = (Zd1 ⊕ · · · ⊕ Zdr)⊕ (0Z)s，因
此存在内直和

R = t(R)⊕ F ′, F ′ ' Zs

作用 θ−1 得

G = t(G)⊕ θ−1(F ′)
def
= t(G)⊕ F

□

评价 因为 F ' G/t(G)，故 F 不唯一，但同构意义下唯一

例 4.75 设 G = Z2 × Z，则 t(G) = Z2 × {0} =< (0, 0), (1, 0) >，记F1 = 0× Z = {(0, n)|n ∈ Z}

F2 = {(n, n)|n ∈ Z}

Ex t(G) 仅有这两个补！

推论 4.8.3 设 G 是无扭群且有限生成，则 G 是有限生成的自由 Abel 群

评价 有限生成是必须的，考虑 Q

定义 4.8.8（有限生成 Abel 群的秩）设 G 是有限生成 Abel 群，定义 rank(G) = rank(F )

推论 4.8.4 设 G,H 为有限生成 Abel 群，则

G ' H ⇐⇒

t(G) ' t(H)

rank(G) = rank(H)

评价 rank(G) = dimQ(Q⊗Z G)，见交换代数

定义 4.8.9（初等因子与不变因子）设 G 是有限 Abel 群，由定理 4.8.2 知

G ' Zd1 × · · · × Zdr

我们称 {d1, · · · , dr} 为 G 的不变因子，设 di 有素因子分解 di = psi11 · · · p
sil
l ，其中 1 ≤ i ≤ r，由中
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国剩余定理知 Zdi ' Zpsi11
× · · · × Zpsill

，按素因子重新排序可得

G '
(
Zps111

⊕ · · · ⊕ Zps1ll

)
⊕ · · · ⊕

(
Zpsr11

⊕ · · · ⊕ Zpsrll

)
'
(
Zps111

⊕ · · · ⊕ Zpsr11

)
⊕ · · · ⊕

(
Zpsrll

⊕ · · · ⊕ Zpsrll

)
def
= Bp1 ⊕ · · · ⊕Bpl

其中 Bpi = Zps1ii
× · · · × Zpsrii

为 G 的 pi-Sylow 子群，我们称
ps111 ps122 · · · ps1ll

ps211 ps222 · · · ps2ll
...

...
...

psr11 psr22 · · · psrll


为 G 的初等因子，由 d1 | · · · | dr 知，s1i ≤ s2i ≤ · · · ≤ sri, ∀1 ≤ i ≤ l

Fact 设 G 是 Abel p-群，若B ' Zps1 × · · · × Zpsl , s1 ≤ · · · ≤ sl

B ' Zpt1 × · · · × Zptl , t1 ≤ · · · ≤ tr

则 r = l, s1 = t1, · · · , sr = tr

证明 考虑

B ⊇ pB ⊇ p2B ⊇ · · · ⊇ pmB = 0

因为 pkB/pk+1B 是 Fp-线性空间，且

dimFp
(pkB/pk+1B) = #{si : sk ≥ k, 1 ≤ i ≤ l}

□

评价 初等因子决定不变因子；反之不变因子决定初等因子

定理 4.8.4（唯一性）设
G ' Zd1 ⊕ · · · ⊕ Zdr

其中 d1 | · · · | dr，则 d1, · · · , dr 由 G 唯一决定

证明 大家自己去琢磨一下 □

Ex 分类 1500 阶 Abel 群 G

解 因为 1500 = 223153，在同构意义下讨论 G 的 Sylow-pi 子群
Sylow-2 子群：Z2

2 或 Z2 ⊕ Z2，共 2 种

Sylow-3 子群：Z3，共 1 种
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Sylow-5 子群：Z3
5 或 Z2

5 ⊕ Z5 或 Z5 ⊕ Z5 ⊕ Z5，共 3 种

因此 1500 阶群 G 共有 3× 2 = 6 种 □

§ 4.9 思考题
本小节是在小伍所谓的“垃圾时间”讲的.

例 4.76 设 D∞ =< s, t | s2 = t2 = 1 >= F (s, t)/N(s2, t2)，记 s = s = sN, t = t = tN，证明 st 无穷阶

证明 回忆 D2n =< x, y | xn = 1, y2 = 1, (xy)2 = 1 >，|D2n| = 2n,Ord(x) = n，若 (st)n = 1，考虑

θ : {s, t} −→ D2(n+1)

t 7−→ y

s 7−→ xy

由命题 4.7.2，因为 θ(t), θ(s) 满足 G 中关系 s2 = t2 = 1，故 θ 可延拓至群同态 θ̃ : D∞ → D2(n+1)，所

以 θ̃(st) = x，但是与 x 的阶为 n+ 1 矛盾！ □

定义 4.9.1（群作用在群上）设 G,N 是群，若有群同态 G
ρ→ Aut(N)，则称 G 作用在群 N 上

Fact (N,φ) ⇐⇒ 存在映射

φ : G×N −→ N

(g, n) 7−→ g.n = ρ(g)(n)

满足

(1) g′(g.n) = (g′g).n

(2) (1G).n = n

(3) g.(nn′) = (g.n)(g.n′), n, n′ ∈ N, g ∈ G

例 4.77（共轭作用）设 G 是群，N ◁G,H ≤ G，则 H 作用于子群 N

h.n = hnh−1 ∈ N

定义 4.9.2（半直积）设群 H 作用于子群 N，即存在群同态 ρ : H → Aut(N)，群 N oρ H 称为 ρ

对应的半直积（常常略去 oρ 中的 ρ）

(1) 作为集合，N oρ H = N ×H
(2) 二元运算定义为

(n, h)(n′, h′) = (n(h.n′), hh′)

= (nρ(h)(n′), hh′)

通过半直积可以构造出很多新的群
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定理 4.9.1 设 N ◁ G,H ≤ G,N ∩ H = {1G}, G = NH，设 ρ : H → Aut(N) 为共轭作用，即

ρ(h) = (n 7→ hnh−1)，则有群同构

N oρ H
∼−→ G

(n, h) 7−→ nh

例 4.78 A3 ◁ S3，设 H = {Id, (12)}，则定理 4.9.1 中的共轭作用具体为

ρ : H
∼−→ Aut(A3)

Id 7−→ Id

(12) 7−→求逆

由定理 4.9.1 ，S3 ' A3 oH ' C3 o C2，即 S3 是循环群的半直积

例 4.79 K4 = {Id, (12)(34), (13)(24), (14)(23)}◁ A4，设 H = {Id, (123), (132)}，可以验证 A4 = K4H，

由定理 4.9.1 知，K4 oρ H ' A4

Ex D8 =< a, b | a4 = 1 = b2 = (ab)2 >，以下考虑共轭作用

1. 取 N1 =< a >,H1 =< b >，算 ρ1 : H1 → Aut(N1)

2. 取 N2 =< a2, b >,H2 =< ab >，算 ρ2 : H2 → Aut(N2)
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第五章 Galois 理论
§ 5.1 Galois 扩张

Recall：给定域扩张 K/k（自然视 k
子域

⊆ K，若为 θ : k ↪→ K，则此时将 k 与 θ(k) 等同）

1. K 成为 k-线性空间
λv = λ · v, λ ∈ k,v ∈ K

并记域扩张的维数 dimkK = [K : k]

2. K/k 的 Galois 群

Gal(K/k)
def
= Aut(K/k) = {σ ∈ Aut(K) : σ|k = Idk, i.e θ(λ) = λ, ∀λ ∈ K}

因此 σ ∈ Gal(K/k) 保“系数”，且我们有 Gal(K/k) ≤ Aut(K)

引理 5.1.1 若 K/k 为有限维域扩张，即 dimkK < +∞，则

|Gal(K/k)| ≤ dimkK < +∞

定义 5.1.1（分裂域）称 K = (k, f(x)) 为 f(x) ∈ k[x] 的分裂域，若
(1) f(x) 在 K 上分裂 Spilt，即

f(x) = (x− a1) · · · (x− an) in K[x]

(2) K 是包含 k, a1, · · · , an 的最小域，即 K = k(a1, · · · , an)

Key Fact f(x) ∈ k[x] 可分，K = (k, f(x))，则

|Gal(K/k)| = dimkK < +∞

证明 对 dimkK 归纳，设 α ∈ K/k, α 在 k[x] 上的最小多项式为 g(x)，任取 β ∈ RootK(g(x))，则存在
唯一的延拓 δ : k(α)→ k(β), α 7→ β

K K

k(α) k(β)

k k

δ̃

δ

α 7→β

由维数公式

dimkK = dimk k(α) · dimk(α)K
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若 f 可分，则这样的 δ 共有 |Rootk(g(x))| = deg g(x) = dimk(k(α)) 个，因为 dimk(α)K < dimkK，

由 f(x) ∈ k[x] 可分知，f(x) ∈ k(α)[x] 可分，由数学归纳法，对于每个 δ，共有 dimk(α)K 个延拓，故

|Gal(K/k)| = dimk k(α) · dimk(α)K = dimkK □

例 5.1 考虑 Q( 3
√
2/Q), dimQ(Q 3

√
2) = 3，但 Gal(Q 3

√
2/Q) = {Id}，

定义 5.1.2（不动子域）设 G ≤ Aut(K)，则有群作用 G↷K

G×K −→ K

(σ,v) 7−→ σ.v = σ(v)

K 关于 G 的不动子域为

KG = {v ∈ K : σ(v) = v, ∀σ ∈ G}

只需验证逆元存在性：对 ∀σ ∈ G ≤ Aut(K)，σ(v−1) = σ(v)−1 = v−1，故 KG 确实是 K 的子域

Fact (1) 若 H ≤ G ≤ Aut(K)，则

KG ⊆ KH ⊆ K = KIdK

(2) 给定域扩张 K/k 以及群 G ≤ Gal(K/k)，则

k ⊆ KG ⊆ K

称 KG 为中间域

(3) 给定域扩张 K/k，在 (2) 中取 G = Gal(K/k)，则

k ⊆ KGal(K/k) = {v ∈ K : ∀σ ∈ Gal(K/k), σ(v) = v} ⊆ K

(4) 取 G ≤ Aut(K)，考虑域扩张 K/KG，则有

G ≤ Gal(K/KG) = {σ ∈ Aut(K) : σ|KG = IdKG}

定理 5.1.1 若 G ≤ Aut(K) 为有限子群，则

(1) [K : KG] = |G|
(2) G = Gal(K/KG)

证明 记 k = KG，设 |G| = n,G = {σ1, · · · , σn}
Claim：Claim：Claim：dimkK ≤ n
Proof Of Claim : 否则存在 {e1, · · · , en+1} ⊂ K，它们 k-线性无关. 考虑 n× (n+ 1) 阶矩阵

A =


σ1(e1) σ1(e2) · · · σ1(en+1)

σ2(e1) σ2(e2) · · · σ2(en+1)
...

...
...

σn(e1) σn(e2) · · · σn(en+1)


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记 A 的解空间为 V = {v ∈ Kn+1 : Av = 0} ⊂ Kn+1（线性子空间），考虑群作用 G↷Kn+1

G×Kn+1 −→ Kn+1(
σ, (λ1, · · · , λn+1)

T
)
7−→ σ.v =

(
σ(λ1), · · · , σ(λn+1)

)T
SubClaimSubClaimSubClaim：若 v ∈ V，则对 ∀τ ∈ G, τ.v ∈ V
对 ∀v = (λ1, · · · , λn+1)

T ∈ V，有

n+1∑
i=1

λiσt(ei) = 0, 1 ≤ t ≤ n

对 ∀τ ∈ G，两边同时作用 τ 得

0 = τ

(
n+1∑
k=1

λkσt(ek)

)
=

n+1∑
k=1

τ(λk)τ(σt(ek))

对 ∀1 ≤ s ≤ n，取 σt = τ−1σs，则
n+1∑
k=1

τ(λk)σs(ek) = 0

取 v = (λ1, · · · , λn+1)
T ∈ V，使得 v 中的 0 分量最多，注意到 0 分量的个数 < n− 1（否则不妨设

v′ = (λ1, 0, · · · , 0)T , λ1 6= 0，则由 Av′ = 0 知，λ1σ1(e1) = 0K，故 σ1(e1) = 0K =⇒ e1 = 0K，矛盾！）

不妨设 v = (λ1, λ2, · · · , λn+1)
T , λ1, λ2 6= 0，其余 λi 要求零元素是 V 中最多，由 V 是线性空间，可

不妨设 λ1 = 1，又注意到 λ2, · · · , λn+1 不全在 k 中，（否则由 v ∈ V,Av = 0 知，考虑 A 中 σi = Id 的
那一行，λ1e1 + · · ·+ λn+1en+1 = 0，与它们线性无关矛盾！）

不妨设 λ2 /∈ k = KG，则 ∃τ ∈ G, s.t. τ(λ2) 6= λ2，故

0 6= v − τ.v = (0, λ2 − τ(λ2), · · · , λn+1 − τ(λn+1))
T ∈ V

若 λi 本来就为零，则 λi − τ(λi) = 0，若 λi 6= 0，则 λi − τ(λi) 有可能为零，但是第一个分量确定变为
零，故 v − τ.v 的 0 分量更多，故矛盾！

因此断言得证，故

n = |G|
Fact(4)
≤ |Gal(K/k)| ≤ dimkK

ClaimClaimClaim

≤ n

□

定理 5.1.2 若 K/k 是有限维域扩张，记 G = Gal(K/k)，则以下等价 TFAE
(1) k = KG

(2) |G| = dimkK

(3) ∀α ∈ K，则 α 在 k 上的最小多项式无重根，且在 K 上分裂

(4) K = (k, f(x)), f(x) ∈ k[x] 可分
此时我们称 K/k 为（有限维）Galois 扩张

评价 (3) 是 local 局部描述；(4) 是 global 整体描述
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证明 (1) ⇐⇒ (2) : 因为

dimkK = dimk(K
G) · [K : KG] = dimkK

G · |G|

所以 k = KG ⇐⇒ dimkK
G = 1 ⇐⇒ |G| = dimkK

(2) =⇒ (3) : 对 ∀α ∈ K，设它的最小多项式为 g(x)，因为

|G| = |Gal(K/k)| ≤ |RootK
(
g(x)

)
| · [K : k(α)] ≤ deg

(
g(x)

)
· [K : k(α)] = [K : k]

由 |G| = [K : k] 知，上式全为等号，故 |RootK
(
g(x)

)
| = deg

(
g(x)

)
，即 g(x) 无重根

(3) =⇒ (4) : 设 K = k(α1, · · · , αn), αi 的最小多项式为 gi(x)，令 f(x) = g1(x) · · · gn(x)，则 f(x) 可

分且 K = (k, f(x)) 为 f(x) 的分裂域

(4) =⇒ (2) : 这是刚刚证明的 KeyFact □

Ex 假设存在同构 δ : k
∼→ k′，若有域扩张 K/k,K ′/k′，则 |δ的延拓| ≤ dimkK

定理 5.1.3（绝对 Galois 双射 Absolute Galois Bijection）对任意域 K，存在双射

{有限群G ≤ Aut(K)} 1:1←→ {k ⊆ K : K/k有限维Galois扩张}

G 7−→ KG

Gal(K/E)←−p E

Ex 求 K = Q( 3
√
2) 的绝对 Galois 双射

定理 5.1.4（相对 Galois 双射 Relative Galois Bijection）设 K/k 是有限维 Galois 扩张，存在双射

{Gal(K/k)的子群} 1:1←→ {K/k的中间域}

H 7−→ KH

Gal(K/E)←−p E

评价 由定理5.1.2(3) 知，在 K/k 是有限维 Galois 扩张的前提下，K/E 总是有限维 Galois 扩张

Ex 考虑域扩张塔 k ⊆ E ⊆ K，则 K/E 是有限维 Galois 扩张（但是 E/k 不一定是 Galois 扩张，见
下练习）

Ex 考虑域扩张塔 Q ⊆ Q( 3
√
2) ⊆ Q( 3

√
2, ω) = (Q, x3 − 2)，证明

1. Q ⊆ Q( 3
√
2) 不是 Galois 扩张

2. Q( 3
√
2) ⊆ Q( 3

√
2, ω) 是 Galois 扩张
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命题 5.1.1 设 K/k 是有限维 Galois 扩张，对于域扩张塔 k ⊆ E ⊆ K，则 E/k 是有限维 Galois 扩
张 ⇐⇒ ∀σ ∈ Gal(K/k), σ(E) = E

证明 (=⇒) : E 是有限维 Galois 扩张，则 ∃g(x) = (x − β1) · · · (x − βm) ∈ k[x], s.t. E = (k, g(x)) =

k(β1, · · · , βm)，对 ∀σ ∈ Gal(K/k)，下面证明 σ(βi) ∈ E, ∀i，考虑 β1 即可，其余同理

对 g(β1) = 0E 两边作用 σ，因为 σ保（k上的）系数，所以 g(σ(β1)) = 0E，故 σ(β1) ∈ RootE(g(x)) ⊂ E，
所以 σ(E) ⊆ E，且 dimk σ(E) = dimk E，故 σ(E) = E

(⇐=) : 对 ∀β ∈ E，设它在 k 上的最小多项式为 g(x)

Claim：Claim：Claim：g(x) 在 E 上分裂

Proof Of Claim : 由 g(x) 在 K 上分裂知，在 K[x] 上有 g(x) = (x − β1) · · · (x − βm)，则对 ∀βi ∈
RootK(g(x))，Idk 有延拓

δi : k(β)
∼−→ k(βi)

β 7−→ βi

上面定义的 δi ∈ Gal(K/k)，故 βi = δi(β) ∈ σ(E) = E，故 g(x) ∈ E 无重根，且在 E 上分裂，故 E/k

是有限维 Galois 扩张 □

评价 Gal(K/k) 中的元素保多项式的根

Ex 设 K/k 是有限维 Galois 扩张，G = Gal(K/k), g(x) ∈ k[x] 不可约，则群作用 G↷RootK(g(x)) 可
迁！

例 5.2 设 K = Q( 3
√
2, ω),K/Q 是有限维 Galois 扩张，记 G = Gal(K/Q) = Aut(K)，考虑群作用

G↷RootK(x3 − 2) = { 3
√
2, 3
√
2ω, 3
√
2ω2} 记为= {a, b, c} 则它对应的群同态（实际上为群同构）

ρ : G
∼
↪→ S({a, b, c}) ' S3

G

< (abc) >

< (ab) > < (ac) > < (bc) >

{Id}

例如 ρ−1(ab)

ρ−1(ab) : K
∼−→ K

3
√
2 7−→ 3

√
2ω

3
√
2ω 7−→ 3

√
2

ω 7−→ ω2

< (ab) > 对应的不动子域为

K<(ab)> = {v ∈ K, ρ−1(ab)(v) = v}
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注意到 ρ−1(ab)( 3
√
2ω2) = 3

√
2ω2 =⇒ 3

√
2ω2 ∈ K<(ab)>，则 Q( 3

√
2ω2) ⊆ K<(ab)>，实际上这是等号！

对于 ρ−1(abc)

ρ−1(abc) : K −→ K

2
√
3 7−→ 2

√
3ω

2
√
3ω 7−→ 2

√
3ω2

2
√
3ω2 7−→ 2

√
3

=⇒ ρ−1(abc)(ω) = ω，进而 Q(ω) ⊆ K<(abc)>，实际上这是等号！

K

Q( 3
√
2ω2) Q( 3

√
2ω) Q( 3

√
2)

Q(ω)

Q

Ex Q(
√
2,
√
3) = K = (Q, (x2 − 2)(x2 − 3))，考虑群作用

G↷RootK
(
(x2 − 2)(x2 − 3)

)
= {
√
2,−
√
2,
√
3,−
√
3} 记为= {a, b, c, d}

画出类似上面例子中的两个图

例 5.3 设 K 为有限域，|K| = pn，考虑域扩张 K/Fp，故 K = (Fp, xp
n − x)，考虑 Frobenius 自同构

σ : K −→ K

a 7−→ ap

则 Gal(K/Fp) = {1, σ, · · · , σn−1} =< σ >，因此

{< σ >的子群} 1:1←→ {K的子域}

< σd > 7−→ K<σd> = {a ∈ K, ap
d

= a} = RootK(xp
d

− x)

例如 n = 12
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< σ > Fp12

< σ2 > Fp6

< σ3 > Fp4

< σ4 > Fp3

< σ6 > Fp2

{Id} Fp

评价 不是我故意要画那么丑，此处通过高低不同区分子群/中间域的阶数不同

例 5.4 由 Cayley 定理，对任意有限群 G, ∃n ∈ N, s.t. G ≤ Sn，考虑群作用 S↷
n k(t1, · · · , tn)，其中

k(t1, · · · , tn) = Frac(k[t1, · · · , tn]) 为 n 元有理函数域，对 ∀σ ∈ Sn, σ(ti) = tσ(i)，故有 G ≤ Sn ↪→
Aut(k(t1, · · · , tn))，即 G 可视为 Aut(k(t1, · · · , tn)) 的子群，所以由定理 5.1.1

G ' Gal
(
k(t1, · · · , tn)/k(t1, · · · , tn)G

)
即任意有限群都可以看作某一 Galois 扩张的 Galois 群

§ 5.2 偏序集与 Galois 对应

定义 5.2.1（偏序集 partially ordered set）称二元组 (L,≤) 记为= L（要求 L 6= ∅）为偏序集，若
(1) 自反性：a ≤ a, ∀a ∈ L
(2) 传递性：a ≤ b, b ≤ c =⇒ a ≤ c
(3) 对称性：a ≤ b, b ≤ a =⇒ a = b

例 5.5 设 G 是群，则子群关系 ≤ 为序关系，此时有偏序集 (Sub(G),≤)，其中 Sub(G) = {H : H ≤ G}

例 5.6 考虑域扩张K/k，则集合的包含关系 ⊆为序关系，此时有偏序集 (Lat(K/k),⊆)，其中 Lat(K/k) =

{K/k的中间域}

定义 5.2.2（最大下界、最小上界）给定偏序集 (L,≤)，定义
(1) ∀a, b ∈ L，称 a ∨ b ∈ L 为 a, b 的最小上界，它满足

(a) a ≤ (a ∨ b), b ≤ (a ∨ b)
(b) 若 ∃c ∈ L, s.t. a ≤ c, b ≤ c，则 (a ∨ b) ≤ c

(2) ∀a, b ∈ L，称 a ∧ b ∈ L 为 a, b 的最大下界，它满足

(a) (a ∧ b) ≤ a, (a ∧ b) ≤ b
(b) 若 ∃c ∈ L, s.t. c ≤ a, c ≤ b，则 c ≤ (a ∧ b)
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定义 5.2.3（格）称偏序集 (L,≤) 为格，若 ∀a, b ∈ L, a ∨ b, a ∧ b 存在

例 5.7 G 的子群格 Sub(G) 是 G 的子群格：对于 ∀H,V ≤ G
1. H ∧ V = H ∩ U
2. H ∨ V =< H ∪ V >，即 H ∪ V 的生成子群

评价 若 H ≤ G,N ◁G，则 H ∨N = HN = NH

例 5.8 域扩张的中间域格 Lat(K/k) 是域扩张 K/k 的中间域格：对于 k ⊆ E,F ⊆ K
1. E ∧ F = E ∩ F
2. E ∨ F =包含E ∪ F的最小子域，即由 E ∪ F 生成的域

例 5.9（反格）设 (L,≤) 为格，则 (Lop,≤op) 也是格，其中作为集合有 Lop = L，≤op 定义为

a ≤op b ⇐⇒ b ≤ a

且 a ∧op b = a ∨ b, a ∨op b = a ∧ b

例 5.10 对 ∀n ≥ 1，定义 Ln = {d : 1 ≤ d ≤ n, d | n}，其中序关系定义为 a � b ⇐⇒ a | b，则 (Ln,�)
为格，最小上界为 lcm，最大下界为 gcd

定义 5.2.4（偏序集的同态、同构）称 f : (L1,≤) −→ (L2,�)，若
(1) f : L1 → L2 是映射

(2) f 保序：若 x ≤ y in L1，则 f(x) � f(y) in L2

若 f 为双射，且 f−1 也是偏序集的同态，则称 f 是偏序集的同构

引理 5.2.1 设 L,L′ 均为格，f : L
∼−→ L′ 为偏序集同构，则 f 保最小上界和最大下界，即

f(a ∨ b) = f(a) ∨ f(b), f(a ∧ b) = f(a) ∧ f(b), ∀a, b ∈ L

Ex 证明上述引理

例 5.11 f−1 不保序，不保最小上界/最大下界：取 n = 12，考虑偏序集的同态

f : ({1, 2, 3, 4, 6, 12},≤)→ (L12,�)

它是双射，但是在 {1, 2, 3, 4, 6, 12} 中，4 ∨ 6 = 6，而在 L12 中，4 ∨ 6 = 12

例 5.12 考虑 n 阶循环群 Cn =< g : gn = 1 >，则有格同构

Sub(Cn)
1:1←→ (Ln,�)

< g
n
d >←−p d
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回忆 G-集 (X,ψ) 的定义：设有群作用 G↷X 定义为映射 ψ : G × X → X，则称 (X,ψ) 为 G-集，
类似地，我们如下定义 G-偏序集

定义 5.2.5（G-偏序集）若存在群作用 G↷L，我们可以定义 G-偏序集（G-poset）为：
(1) (L,�) 是偏序集
(2) 有群作用 G↷L，对应的群同态为 ρ : G −→ Aut(L,�)
(3) 相容性：对 ∀g ∈ G, a � b ⇐⇒ g.a � g.b

例 5.13 G↷Sub(G)
g.H = gHg−1

因为 H ≤ U =⇒ gHg−1 ≤ gUg−1，故满足相容性

例 5.14 Gal(K/k) = G↷Lat(K/k)

σ.E = σ(E) = {σ(v) : v ∈ E}

设 E1 ⊆ E2，由定义显然有 σ(E1) ⊆ σ(E2)，故满足相容性

定理 5.2.1（Galois 理论的基本定理）设 K/k 是有限维 Galois 扩张，G = Gal(K/k)，则有格同构

（G-偏序集同构）
Sub(G) ∼−→ Lat(K/k)op

H 7−→ KH

Gal(K/E)←−p E

且 φ 满足

(1) φ 保最小上界 ∨ 和最大下界 ∧
(2) φ 保 G-作用，即

• KσHσ−1

= σ(KH)

• Gal(K/σ(E)) = σ(Gal(K/E))σ−1

证明 只证明 (2)，因为

x ∈ KσHσ−1

⇐⇒ ∀τ ∈ H,στσ−1(x) = x

⇐⇒ ∀τ ∈ H, τ(σ−1(x)) = σ−1(x)

⇐⇒ σ−1(x) ∈ KH

⇐⇒ x ∈ σ(KH)

所以 KσHσ−1

= σ(KH)，又因为

Gal(K/σ(E)) = {δ ∈ Aut(E) : δ ◦ σ(e) = σ(e), ∀e ∈ E}

= {δ ∈ Aut(K) : (σ−1 ◦ δ ◦ σ)|E = IdE}

= σGal(K/E)σ−1

□
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推论 5.2.1 设 K/k 为有限维 Galois 扩张，G = Gal(K/k)，则

(1) 设 k ⊆ E ⊆ K，则 KGal(K/E) = E，且 [E : k] = [G : Gal(K/E)]

(2) 设 H ≤ G，则 Gal(K/KH) = H，且 [G : H] = [KH : k]

证明 考虑定理5.2.1，有恒等映射 H 7→ KH 7→ Gal(K/KH), E 7→ Gal(K/E) 7→ KGal(K/E)，所以

KGal(K/E) = E, Gal(K/KH) = H

只证明 (2) 中等式，(1) 中等式类似，由定理5.1.1、维数公式和 Lagrange 定理
|G| = [G : H] · |H|

[K : k] = [KH : k] · [K : KH ]

|H| = [K : KH ], |G| = [K : k]

=⇒ [G : H] = [KH : k]

□

推论 5.2.2 设 K/k 为有限维 Galois 扩张，G = Gal(K/k)，则

(1) 设 H,U ≤ G，则 KH ∩KU 平凡
= KH∨U

KH ∧KU 不平凡
= KH∩U

(2) 设 k ⊆ F,E ⊆ K，则 Gal(K/(F ∨ E)) = Gal(K/F ) ∩Gal(K/E)

Gal(K/(F ∩ E)) = Gal(K/F ) ∨Gal(K/E)

推论 5.2.3 Sub(G) 和 Lat(K/k)op 在 G-作用下的不动点集为
Sub(G)G = {H ≤ G : σHσ−1 = H, ∀σ ∈ G} = {H : H ◁G}
(Lat(K/k)op)

G
= {E : E是K/k的中间域, σ(E) = E, ∀σ ∈ G}

= {E : E/k为有限维Galois扩张}

其中第二行的第二个等号是因为命题 5.1.1

推论 5.2.4 有不动子群同构
Sub(G)G ∼−→ (Lat(K/k)op)

G

考虑域扩张塔 k ⊆ E ⊆ K，则 Gal(K/E)◁G ⇐⇒ E/k 是有限维 Galois 扩张，此时称 E 是 K 的

正规子域，且有群同构

G/Gal(K/E) ' Gal(E/k)
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证明 考虑满同态（满射由延拓定理知）

θ : G −→ Gal(E/k)

σ 7−→ σ|E

因为 Kerθ = Gal(K/E)，由群同态基本定理即证 □

评价 对于推论5.2.4中的同构，考虑 H ≤ G 的稳定化子 GH = {σ ∈ G : σHσ−1 = H}，对应地，KH 的

稳定化子为 G(KH) = {σ ∈ G : σ(KH) = KH}，它们实际上有如下关系

Ex 证明 Gal(KH/k) = GH/H

评价 这个练习不是那么平凡，需要一些慧眼

命题 5.2.1 设 f(x), g(x) ∈ k[x]可分，K = (k, f(x)g(x)), B = (k, f(x)), C = (k, g(x))，若 B∩C = k，

则

Gal(K/k) ' Gal(B/k)×Gal(C/k)

证明 记 G = Gal(K/k)

K {IdK}

B C Gal(K/B) Gal(K/C)

k G

注意到 B ∩ C = k,B ∨ C = K，由定理5.2.1知Gal(K/B) ∨Gal(K/C) = G

Gal(K/B) ∩Gal(K/C) = {Id}

由 f, g 可分知，B/k, C/k 是 Galois 扩张，所以 Gal(K/B) ◁ G,Gal(K/C) ◁ G，则 G = Gal(K/B) ∨
Gal(K/B) = Gal(K/B)Gal(K/C)，由下面的练习知

G = Gal(K/B)Gal(K/C) ' Gal(K/k)

Gal(K/B)
× Gal(K/k)

Gal(K/C)

Cor 5.2.4' Gal(B/k)×Gal(C/k)

Ex 设 N1 ◁G,N2 ◁G，且 N1N2 = G,N1 ∩N2 = {1G}，则 G ' (G/N1)× (G/N2)

例 5.15 设 K = (Q, (x2 − 2)(x2 − 3)), B = Q(
√
2), C = Q(

√
3)，则由上面的命题知

Gal(K/Q) ' µ2 × µ2
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定理 5.2.2（Steinitz, 1910）设 K/k 是有限维域扩张，则 K/k 是单扩张 ⇐⇒ K/k 只有有限个中

间域

证明 (=⇒) : 设 K = k(α)，α 在 k 上的最小多项式为 f(x)，考虑域扩张塔

k ⊆ E ⊆ K

设 α 在 E 上的最小多项式为 g(x) = xm + c1x
m−1 + · · ·+ cm, ci ∈ E，则 E ⊇ B = k(c1, · · · , cm)

Claim：Claim：Claim：E = B

Proof Of Claim : 只需证明 E ⊆ B，因为 dimEK = m = dimBK，由维数公式知 dimB E = 1，故

E = B

又因为 g(x) | f(x) in k[x]，且 f(x) 只有有限多个因子，故只有有限多个中间域

(⇐=) : 若 |k| < +∞，则 k ' Fpn 为单扩张，下面设 |k| = +∞，设 K = k(α1, · · · , αt)，考虑域扩
张塔

k ⊆ k(α1, α2) ⊆ K

对 ∀λ ∈ k，设 Eλ = k(α1 + λα2)，由只有有限多个中间域知 ∃λ1 6= λ2, s.t. Eλ1
= Eλ2

，因为α1 + λ1α2 ∈ Eλ1

α1 + λ2α2 ∈ Eλ2

=⇒ α1, α2 ∈ Eλ1
= Eλ2

因此 k(α1, α2) = k(α1 + λ1α2) = k(α1 + λ2α2) 是单扩张，由数学归纳法可知 K/k 是单扩张 □

评价 若 K/k 是有限维单扩张，对于 ∀k ⊆ E ⊆ K，因为 E/k 只有有限多个中间域，所以 E/k 是单扩张

定理 5.2.3（本原元定理 ,Galois）设 K/k 是有限维可分扩张（∀α ∈ K，α 在 k 上的最小多项式可

分），则 K/k 是单扩张

证明 设 K = k(α1, · · · , αt)，αi 在 k 上的最小多项式为 gi(x)，取 E = (K, g1(x) · · · gt(x))，则 k ⊆ K ⊆ E，
且 E/k 也是分裂域，由可分知 E/k 是 Galois 扩张，故 E/k 只有有限多个中间域，由上面的注记知 K/k

也只有有限多个中间域，故 K/k 是单扩张 □

评价 Galois 扩张是可分扩张，因此是单扩张

例 5.16 k = Fp(t1, t2),K = (k, (xp − t1)(xp − t2))，则在 K 上有（作业做过）

(xp − t1)(xp − t2) = (x− a)p(x− b)p, ∃a, b ∈ K, ap = t1, b
p = t2

则 K = k(a, b)，由 Eisenstein 判别法知 xp − t1, xp − t2 不可约，由下面练习可知定理5.2.3中的可分条件
是必要的

Ex 证明

1. dimkK = p2

2. Gal(K/k) = {Id}
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3. ∀λ ∈ k，定义 Eλ = k(a+ λb)，则

• dimk Eλ = p

• Eλ 6= Eµ, ∀λ 6= µ

接下来利用 Galois 理论证明代数学基本定理（Fundamental Theorem of Algebra），首先需要引理如
下

引理 5.2.2
(1) 若 R $ K，则 dimRK 为偶数

(2) 若 C ⊆ K，则 dimCK 6= 2

证明

(1) 对 ∀α ∈ K\R，设 α 的最小多项式为 f(x)，则 deg f(x) | dimRK，假设 dimRK 为奇数，则 deg f(x)
也为奇数，奇数次多项式一定有实根，这与 f 在 R 上不可约矛盾！

(2) 假设 dimCK = 2，则 ∃α ∈ K\C, s.t. K = C(α)，设 α 在 C 上的最小多项式为 x2 + ax+ b，由求

根公式知 α = −a±
√
a2−4b
2

∈ C，矛盾！ □

定理 5.2.4（代数基本定理） C 是代数封闭域，i.e ∀f(x) ∈ C[x] 有复根

证明 设 f(x) =
n∑
i=0

aix
i ∈ C[x] 不可约，考虑 f(x) =

n∑
i=0

aix
i，则

f(x)f(x) =
2n∑
k=0

ckx
k, ck =

∑
i+j=k

aiaj

易见 ck = ck，即 f(x)f(x) ∈ R[x]，因为 f(x) 有复根 ⇐⇒ f(x)f(x) 有复根，所以我们只需证明

∀p(x) ∈ R[x] 有复根
Claim：Claim：Claim：设 p(x) ∈ R[x] 不可约，K/R 为 (x2 + 1)p(x) 的分裂域，则 K/R 是 Galois 扩张
Proof Of Claim : 由 Char(R) = 0 知，(x2 + 1)p(x) 可分，故 K/R 为有限维 Galois 扩张
Claim：Claim：Claim：设 G = Gal(K/R)，则 |G| = 2r

Proof Of Claim :否则，|G| = 2rm，m是奇数，由 Sylow定理知 G有 Sylow-2子群 P，则 [G : P ] = m，

考虑域扩张塔

R ⊆ KP ⊆ K

因为 [KP : R] = m，由引理5.2.2(1) 知 m = 1，故 dimCK = dimRK
dimR C = 2r−1，设 G′ = Gal(K/C)，则由

定理5.1.1知 |G′| = 2r−1� 再由下面的练习知，∃H ≤ G′, s.t. [G′ : H] = 2，考虑如下域扩张塔

C ⊆ KH ⊆ K

因为 dimCK
H = [G′ : H] = 2，这与引理5.2.2(2) 矛盾！ □

Ex 设 U 是 p-群，则 ∃V ≤ U, s.t. [U : V ] = p

评价 考虑 Q ⊆ Q(
√
2) ⊆ Q( 4

√
2)，则 Q(

√
2)/Q,Q( 4

√
2)/Q(

√
2) 是 Galois 扩张，但是 Q( 4

√
2)/Q 不是

Galois 扩张
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§ 5.3 根式扩张与 Galois 大定理

定义 5.3.1（根式扩张、根式扩张塔）称 E/k 是根式扩张 (of type m)，若 E = k(α)，且 αm = a ∈ k；
称域扩张塔

k = E0 ⊆ E1 ⊆ · · · ⊆ En

为根式扩张塔，若 Ei/Ei−1, 1 ≤ i ≤ n 为根式扩张

评价 形象的记号：α = m
√
a，但是一般不这么写

定义 5.3.2（根式可解）称 f(x) ∈ k[x] 根式可解，若存在根式扩张塔

k ⊆ E0 ⊆ E1 ⊆ · · · ⊆ En

使得 f(x) 在 En 中分裂，即 (k, f(x)) ⊆ En

例 5.17 设 f(x) = x2 + bx+ c ∈ C[x]，则 k
def
= Q(b, c) ⊆ C，我们有

k = E0 ⊆ E1 = k(
√
b2 − 4c) = k(α)

取 α ∈ C, s.t. α2 = b2 − 4c，则 k(α)/k 是根式扩张

Fact 设 E = k(α), αm = a ∈ k，则

(1) k 恰有 m 次本原单位根 ω，则 (xm−a) =
m∏
i=1

(x−ωiα) in E[x]，进而 E = (k, xm−a)，且由 xm−a

无重根知，它在 k 上可分，故 E/k 是 Galois 扩张，此时

Gal(E/k) = {Id, σ1, · · · , σm−1}, σi(α) = ωiα

有群嵌入（因此 Gal(E/k) 是 Abel 群）

Gal(E/k) ↪−→ (Zm,+)

σi 7−→ i

(2) 若 Char(k) = 0，考虑 E′ = (E, xm − 1) = E(ω), ω 为 m 次本原单位根，此时有域扩张塔

k E E′ = E(ω)

k(ω) = k′

因此

• 由 (1) 知 Gal(E′/k′) ↪→ (Zm,+)，故 Gal(E′/k′) 为 Abel 群
• 因为 k′/k 为分圆域扩张，所以 Gal(k′/k) ↪→ U(Zm)，且 Gal(k′/k) 为 Abel 群
考虑域扩张塔 k ⊆ k′ ⊆ E′，因为 k′ = k(ω) = (k,Φm(x))，所以 k′/k 是 Galois 扩张，故

Gal(E′/k′)◁ Gal(E′/k), Gal(E′/k)/Gal(E′/k′) ' Gal(k′/k)
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可以用如下群的正合列表示

1 −→ Gal(E′/k′)
⊴
↪−→ Gal(E′/k) −↠ Gal(K ′/k) −→ 1

故有满射 Gal(E′/k) −↠ Gal(E/k)，且有（我不太懂）

Gal(E/k)
∼→ N(Gal(E′/E))/Gal(E′/E)

引理 5.3.1 若 Char(k) = 0，则任意根式扩张塔可以扩张成 Galois 扩张，即 k = E0 ⊆ · · · ⊆ En 可

延长至

k = E0 ⊆ · · · ⊆ En ⊆ · · · ⊆ Em

满足 Em/k 是 Galois 扩张

评价 这个引理的作用：可以不妨设根式扩张塔 k = E0 ⊆ · · · ⊆ En 中，En/k 是 Galois 扩张

证明 由本原元定理5.2.3，可设 En = k(β)，β 在 k 上的最小多项式为 f(x)，取 K = (En, f(x))，则有

域扩张塔

k ⊆ En ⊆ K

由根式扩张知 f 在 En 上可分，故 K/k 是 Galois 扩张，设 Gal(K/k) = {σ0 = Id, σ1, · · · , σp}
Claim：Claim：Claim：En ⊆ En ∨ σ1(En) 可表示为根式扩张塔
Proof Of Claim : 考虑如下域扩张塔

En ⊆ En ∨ σ1(E1) ⊆ En ∨ σ1(E2) ⊆ · · · ⊆ En ∨ σ1(En)

因为 E1/k 为根式扩张，所以 En ∨ σ1(E1)/En 为根式扩张；因为 E2/E1 是根式扩张，所以 (En ∨
σ1(E2))/(En ∨ σ1(E1)) 是根式扩张；依此类推知 En ⊆ En ∨ σ1(En) 可表示为根式扩张塔，对 σ2, · · · , σp
进行类似操作，故有根式扩张塔

k ⊆ En ⊆ En ∨ σ1(En) ⊆ En ∨ σ1(En) ∨ σ2(En) ⊆ · · · ⊆ En ∨ σ1(En) ∨ · · · ∨ σp(En) = K

（需要完成下面的练习），进而 K/k = (En, f(x))/k 为 Galois 扩张 □

Ex 验证 En ∨ σ1(En) ∨ · · · ∨ σp(En) = K

Fact（此部分为了证明 Galois 大定理准备的，可以先跳转到可解群部分）
(1) 设有根式扩张塔 k = E0 ⊆ E1 ⊆ · · · ⊆ En，不妨设 En/k 是 Galois 扩张，假设 k 有充分多1的单位

根，根据上一个 Fact ，每个 Ei/Ei−1 都是 Galois 扩张，每个 Gal(Ei/Ei−1) 都是 Abel 群，对应
有 Galois 群的下降列（由 Galois 扩张知前一个群是后一个群的正规子群）

Gal(En/E0)⊵ Gal(En/E1)⊵ Gal(En/E2)⊵ · · ·⊵ {Id}
1充分多表示 k 中包含根式扩张塔中所有 type 的单位根
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由推论5.2.4，相邻的群做商得（称为因子）

Gal(En/E0)/Gal(En/E1) ' Gal(E1/E0), Gal(En/E1)/Gal(En/E2) ' Gal(E2/E1), · · ·

所以 Gal(E1/E0),Gal(E2/E1), · · · ,Gal(En/En−1) 均为 Abel 群
(2) 一般地，设 Char(k) = 0，假设 k 没有足够的单位根，设有根式扩张塔 k = E0 ⊆ E1 ⊆ · · · ⊆ En，

不妨设 En/k 是 Galois 扩张，设每个根式扩张 Ei/Ei−1 的 type 为 mi，记 M = lcm(m1, · · · ,mn)，

考虑 E′
n = (En, x

M − 1)，记 ω 为 M 次本原单位根，考虑域扩张塔

k En E′
n

k(ω) = k′

故有群正合列

1 Gal(E′
n/k

′) Gal(E′
n/k) Gal(k′/k) 1

Gal(En/k)

⊴

回忆：若 f(x) ∈ k[x],Galk(f) = Gal((k, f(x))/k)，若 f 根式可解，即存在根式扩张塔

k = E0 ⊆ · · · ⊆ En

（可不妨设 En/k 是 Galois 扩张）使得 f(x) 在 En 上分裂，即 L
def
= (k, f(x)) ⊆ En，此时有满射

Galk(f) = Gal(L/k) ↞ Gal(En/k)

定义 5.3.3（可解群） 有限群 G 称为可解群 (Solvable)，若存在子群降列

G = G0 ⊵G1 ⊵G2 ⊵ · · ·⊵Gn = {Id}

满足 Gi+1 ⊴Gi，因子 Gi/Gi+1 为 Abel 群

例 5.18
n = 1 时，G = G0 ⊵G1 = {1G}，因子 G/{1G} ' G 为 Abel 群，即 Abel 群可解

例 5.19 n = 2 时，G = G0 ⊵G1 ⊵G2 = {1G}，因子 G/G1, G1/G2 ' G1 为 Abel 群，故有群正合列

1 G1 G G/G1 1

Abel Abel

⊴

例如 S3 可解：S3⊵A3⊵ {Id}，即有 1→ A3

⊴
↪→ S3 ↠ C2 → 1，其中 S3/A3 ' C2，C2 为二阶循环群

例 5.20 n = 3 时，G = G0 ⊵G1 ⊵G2 ⊵G3 = {1G}，因子 G/G1, G1/G2, G2/G3 ' G2 为 Abel 群，可以
表示为两个群正合列
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Abel Abel

1 G2 G1 G1/G2 1

1 G1 G G/G1 1

Abel Abel

⊴

⊴

例如 S4 可解：S4 ⊵A4 ⊵K4 ⊵ {Id}，即有

1 −→ K4

⊴
↪−→ A4 −↠ C3 −→ 1

1 −→ A4

⊴
↪−→ S4 −↠ C2 −→ 1

其中 A4/K4 ' C3, S4/A4 ' C2

例 5.21 根据定义，非 Abel 单群不可解！因此 An, n ≥ 5 不可解，因为 An ≤ Sn，由下面的命题知

Sn, n ≥ 5 不可解

命题 5.3.1 设 G 可解，则

(1) 若 H ≤ G，则 H 可解

(2) 若 N ⊴G，则 G/N 可解

Ex 证明上述事实

Hint : 由 G 可解可设 G⊵G1 ⊵G2 ⊵ · · ·⊵Gn = {1G}，考虑H ⊵ (H ∩G1)⊵ (H ∩G2)⊵ · · ·⊵H ∩Gn = {1G}

G/N ⊵ (G1N)/N ⊵ (G2N)/N ⊵ · · ·⊵ (GnN)/N = {1G/N}

命题 5.3.2 若 N ◁G，若 N,G/N 可解，则 G 可解

证明 由 N,G/N 可解可设N ⊵N1 ⊵N2 ⊵ · · ·⊵Nn = {1G}

G/N ⊵G1/N ⊵G2/N ⊵ · · ·⊵N/N = {1G/N}

由对应定理知有子群降列 G⊵G1 ⊵G2 ⊵ · · ·⊵N，将它与 N 的子群降列相接得

G⊵G1 ⊵G2 ⊵ · · ·⊵N ⊵N1 ⊵N2 ⊵ · · ·⊵Nn = {1G}

故 G 可解 □

例 5.22 设 G 是 p-群，则 G 可解
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证明 设 |G| = pn，对 n 归纳，n = 1 时 |G| = p，G 为循环群，故为 Abel 群，可解，假设 n < k 时命

题均成立，下面证明 n = k 时，因为 p-群 G 有非平凡中心 Z(G)

Case 1. 若 Z(G) = G，则 G 是 Abel 群，故 G 可解

Case 2. 若 Z(G) 6= G，则由 Lagrange 定理知 |Z(G)| = ps, s < n, |G/Z(G)| = pt, t < n，由归纳假

设知 Z(G), G/Z(G) 均可解，又因为 Z(G)◁G，由命题5.3.2，G 可解 □

引理 5.3.2 设 K/k 是有限维 Galois 扩张，Gal(K/k) =< σ >, σp = IdK , p 素数，若 k 有 p 次本原

单位根，则 K/k 是根式扩张 of type p

证明 将 σ : K → K 视为 k-线性同构，因为 σp = IdK，且 dimkK = p，故 xp − 1 为 σ 的特征多项式

因为 p 次本原单位根满足 ωp = 1，所以 ω 为 σ 的特征值，设 β ∈ K 是 ω 所对应的特征向量，则

σ(β) = ωβ 6= β，则 σ(βp) = (ωβ)p = βp =⇒ βp ∈ K<σ> = k，考虑域扩张塔

k $ k(β) ⊆ K

由维数公式知 [K : k(β)] · [k(β) : k] = [K : k] = p，因为 β /∈ k，所以 [k(β) : k] > 1，故只能等于 p，进

而 [K : k(β)] = 1，K = k(β)，即 K/k 是根式扩张 of type p □

定理 5.3.1（Galois 大定理）设 Char(k) = 0, f(x) ∈ k[x]，则

f(x)根式可解 ⇐⇒ Galk(f)为可解群

证明 (=⇒) : 由根式可解的定义知存在根式扩张塔 k = E0 ⊆ · · · ⊆ En，使得 L = (k, f(x)) ⊆ En，由引

理5.3.1，可不妨设 En/k 是 Galois 扩张，由先前的 Fact(2)知 Gal(E′
n/k

′),Gal(k′/k) 均为 Abel 群，故它
们可解，又因为 Gal(k′/k) ' Gal(E′

n/k)/Gal(E′
n/k

′)，由命题5.3.2知 Gal(E′
n/k) 可解，由 L ⊆ En ⊆ E′

n

知，有满射 Gal(E′
n/k) ↠ Gal(En/k) ↠ Gal(L/k) = Galk(f)，所以由命题5.3.1(1) 知 Galk(f) 可解

(⇐=) : 设 K = (k, f(x)), G = Galk(f) = Gal(K/k) 可解

Case 1. k 有 |G| 次本原单位根，由下面的练习知，∃H ◁G,G/H ' Cp, p 素数，考虑域扩张塔

k ⊆ KH ⊆ K

我们有如下观察

(1) 因为 Gal(K/KH) = H ◁G，由推论5.2.4知 KH/k 是 Galois 扩张
(2) Gal(KH/k) ' Gal(K/k)/Gal(K/KH) = G/H ' Cp

由引理5.3.2知，KH/k 是根式扩张 of type p，因为 Gal(K/KH) = H 可解 (H ◁G)

对 H 继续重复上述和 G 一样的操作，可以得到子群降列 G⊵H ⊵ U ⊵ · · · 可解，故有根式扩张塔
k ⊆ · · · ⊆ KU ⊆ KH ⊆ K，即 f(x) 根式可解

Case 2. 一般地，考虑 k ⊆ K ⊆ K ′ = (K,x|G| − 1) = K(ω)，其中 ω 是 |G| 次本原单位根

k K K ′ = K(ω)

k(ω) = k′
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Claim：Claim：Claim：有嵌入单同态 Gal(K ′/k′) ↪→ G = Gal(K/k)

Proof Of Claim : 考虑映射

φ : Gal(K ′/k′) −→ G = Gal(K/k)

σ 7−→ σ|K

因为 K ∨ k′ = K ′，所以

σ ∈ Ker(φ) ⇐⇒ σ|K = IdK , σ|k′ = Idk′
K∨k′=K′

⇐⇒ σ|K′ = IdK′

⇐⇒ σ = IdK′

所以 Ker(φ) = {IdK′}，即 φ 为单射

由 Case 1 知，k(ω) ⊆ K ′ = K(ω) 可表示为根式扩张塔，故 k ⊆ k(ω) ⊆ K ′ = (k(ω), f(x)) 为根式

扩张塔，则 f(x) 根式可解 □

Ex 若 G 可解，则 ∃H ◁G, s.t. G/H ' Cp, p 是素数

例 5.23 设 f(x) = x5 − 4x + 2 ∈ Q[x], G = GalQ(f) = Gal(E/Q)，设 RootC(f) = {z1, · · · , z5}，设
E = Q(z1, · · · , z5)，则有如下观察
(1) f(x) 不可约 =⇒ zi, 1 ≤ i ≤ 5 在 Q 上的最小多项式为 f(x)

(2) f 有三个实根，设为 z3, z4, z5，两个虚根 z1, z2 共轭

(3) |GalQ(f)| = dimQE

考虑群作用 G↷RootC(f)
def
= X，对应有群同态

G
ρ

↪−→ S(X) ' S5

σ 7−→ σ|X

因此可视 ρ(G) 为 S5 的子群，考虑域扩张塔 Q ⊆ Q(z1) ⊆ E，则 [Q(z1) : Q] = 5 | |G|，故 ρ(G) 有 5 阶

元 =⇒ ρ(G) 有 5-循环
再考虑复共轭 τ : E

∼→ E, z 7→ z，ρ(τ) 为对换 (z1z2)，在 S5 中即为 (12)，我们有如下事实

Fact (12) 以及任意 5-循环生成 S5（将 5 换为任意素数 p 都对）

进而 ρ 是满射，故为双射，即 G ' ρ(G) ' S5，由 Galois 大定理以及 S5 不可解知，f(x) 根式不可

解

定理 5.3.2 考虑 n 元有理函数域 F = k(t1, · · · , tn)，定义一般方程如下

f(x) = xn − t1xn−1 + t2x
n−2 + · · ·+ (−1)ntn ∈ F [x]

则 GalF (f) ' Sn ，进而若 Char(k) = 0，则 Char(F ) = 0, ∀n ≥ 5，即 f 不根式可解

证明 设 y1, · · · , yn 是字母，考虑群作用 S↷
n k[y1, · · · , yn]

(Sn, k[y1, · · · , yn]) −→ k[y1, · · · , yn]

(σ, f) 7−→ f(yσ(1), · · · , yσ(n))
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我们有如下事实（没来得及证明）

Fact 有群同构
k[t1, · · · , tn]

∼−→ k[y1, · · · , yn]Sn

t1 7−→ y1 + · · ·+ yn

t2 7−→
∑
i<j

yiyj

· · · · · · · · ·

tn 7−→ y1 · · · yn

它诱导分式域同构

k(t1, · · · , tn)
∼→ k(y1, · · · , yn)Sn

又因为 k(y1, · · · , yn)Sn ⊆ k(y1, · · · , yn)，取 {y1, · · · , yn} 为 f 的根集，考虑下图

k(y1, · · · , yn)sn F

k(y1, · · · , yn) F

∼

则 k(y1, · · · , yn)/F 为 f(x) 的分裂域，故 GalF (f) = Gal(k(y1, · · · , yn)/F )；又因为群作用对应了群同态
ρ : Sn ↪−→ Aut(k(y1, · · · , yn))，故可视 Sn 为 Aut(k(y1, · · · , yn)) 的子群，由定理5.1.1知

GalF (f) = Gal
(

k(y1, · · · , yn)
k(y1, · · · , yn)Sn

)
' Sn

评价（Lagrange 定理 |G| = |H| · [G : H] 的由来）考虑对称多项式全体

k[y1, · · · , yn]Sn = {g(y1, · · · , yn)|σ(g) = g, ∀σ ∈ Sn}

Lagrange 证明了如下事实：g(y1, · · · , yn) ∈ k[y1, · · · , yn]
1. Gg = {σ ∈ Sn|σ(g) = g} ≤ Sn
2. Og = {σ(g)|σ ∈ Sn} ⊆ k[y1, · · · , yn]

则 |Gg| · |Og| = |Sn|，后来人们发现可以推广到一般情形
invarient theory 是当时的研究热门

定义 5.3.4（群的合成列）群 G 的合成列是指子群降列

G = G0 ≥ G1 ≥ · · · ≥ Gn = {1G}

满足 Gi ◁Gi−1, Gi−1/Gi 是单群，即 G 可由“因子”Gi−1/Gi 拼起来

例 5.24 n = 1 时，G = G0 ≥ G1 = {1G}，故 G ' G0/{1G}，G 为单群

129



近世代数 (H) 课堂笔记 § 5.3 根式扩张与 Galois 大定理

引理 5.3.3 |G| < +∞，则 G 有合成列

证明 若 G 是单群，则 G ≥ {1G} 为 G 的合成列；若 G 不是单群，取 H ◁G 且 |H| 极大，则有 G ≥ H，
且 G/H 没有非平凡正规子群，故它是单群，对 H 继续和 G 一样的操作即可 □

例 5.25 (Q,+) 无极大真子群

证明 假设有极大真子群 H，则 Q/H 没有非平凡子群，故它为 Abel 单群，故 Q/H ' Cp，有满同态

θ : Q −↠ Cp, 1 7−→ 1

则 p 7→ 0，然而 0 = θ(p) · θ( 1
p
) = θ(p · 1

p
) = 1，矛盾！

例 5.26 D8 =< x, y|x4 = 1 = y2, yxy−1 = x2 >，它有两个不同的合成列

D8 ≥< x >≥< x2 >≥ {1G}

D8 ≥< x2, y >≥< y >≥ {1G}

例 5.27 C6 = {g|g6 = 1}，它有两个合成列

C6 ≥< g2 >≥ {1G}

C6 ≥< g3 >≥ {1G}

定理 5.3.3（Jordan−Holder）设 G 有两个合成列

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gn = {1G}, G = H0 ≥ H1 ≥ H2 ≥ · · · ≥ Hm = {1G}

则 n = m，且因子集相同

评价 能观察到不同中的相同，这就是慧眼

证明 哎，摆了

□
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命题 5.3.3 设 G 是有限群，则 G 可解 ⇐⇒ G 的合成因子都是 Cp, p 是素数

接下来两个结论了解即可，不要求掌握

推论 5.3.1（Burnside, 1904）设 |G| = paqb, p, q 为素数，则 G 可解

推论 5.3.2（Feit− Thompson, 1963） |G| 是奇阶群，则 G 可解

定义 5.3.5（换位子、换位子群）设 G 是群，g, h ∈ G，定义

[g, h] = ghg−1h−1

为 g, h 的换位子，显然有 [g, h] = 1G ⇐⇒ gh = hg，称

[G,G] = {[g, h] : g, h ∈ G}

为由换位子生成的子群，称为 G 的换位子群

Fact 换位子群有如下性质
(1) [G,G]◁G

(2) G/[G,G]
def
= Gab 是 Abel 群

(3) 若 N ◁G，则 G/N 是 Abel 群 ⇐⇒ N ⊇ [G,G]

证明 (1).g[a, b]g−1 = [gag−1, gbg−1] =⇒ g[G,G]g−1 = [G,G] □

Fact 若 G =< x1, · · · , xn|r1, · · · , rm >，则

Gab =< x1, · · · , xn|r1, · · · , rm, xixjx−1
i x−1

j , ∀1 ≤ i, j ≤ n >

定理 5.3.4 定义 G(1) = [G,G], G(2) = [G(1), G(1)], · · ·，则 G 可解 ⇐⇒ ∃n ∈ N∗, s.t. G(n) = {1G}

§ 5.4 判别式
但遗憾的是这节课我翘了
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